Alkali metal vapors enable access to single electron systems, suitable for demonstrating fundamental light-matter interactions and promising for quantum logic operations, storage and sensing. However, progress is hampered by the need for robust and repeatable control over the atomic vapor density and over the associated optical depth. Until now, a moderate improvement of the optical depth was attainable through bulk heating or laser desorption – both time-consuming techniques. This study attempts to produce better results by using plasmonic nanoparticles.