%width and depth b=110;dm=195; %longitudinal bars Ef=144000;efu=0.0181;ffu=Ef*efu;Af=142.5; %concrete strength and factors fc=28; Ec=22*(fc/10)^0.33*1000; a1=0.85-0.0015*fc; if a1<0.67, a1=0.67; end b1=0.97-0.0025*fc;%concrete factor if b1<0.67, b1=0.67; end ecu=0.0035; %bending capacity calculation point a=400; du=195-2.7116*(600-a)^2/10000; %effective depth at the loading point %calculate the nominal flexural strength (Mn) of critical section pf=Af/b/du; ff=((Ef*ecu)^2/4+a1*b1*fc/pf*Ef*ecu)^0.5-0.5*Ef*ecu; c=Af*ff/(a1*fc*b1*b); Mn=Af*ff*(du-b1*c/2); %applied load calculation according to nominal flexural strength Pu=Mn/a*1.5; % material property of shear links Efv=107000;efvu=0.005;ffvu=Efv*efvu; %shear reinforcement ratio%%%%%%%%%%%%%%%%%%%%%%%%%%%% pfv=0.00; %critical section av=50; dv=(195-2.7116*(600-av)^2/10000)*0.9; pf2=Af/b/dv/0.9;%reinforcement raito of critical cross section %shear contribution of concrete k3=(dv/0.9/a)^0.5; if k3>1, k3=1; end k4=1+(Ef*pf2)^(1/3); Vc=0.05*k3*k4*(fc)^(1/3)*b*dv; if Vc>0.22*(fc)^0.5*b*dv, Vc=0.22*(fc)^0.5*b*dv; else if Vc<0.11*(fc)^0.5*b*dv, Vc=0.11*(fc)^0.5*b*dv; end end %%arch effect ka=2.5*(dv/0.9/a); if ka<1, ka=1; else if ka>2.5, ka=2.5; end end Vc=Vc*ka; %member size ks=750/(450+dv/0.9); if ks<1, Vc=Vc*ks; end %shear contribution of longitudinal bars tana=2*2.7116*(600-av)/10000; at=atan(tana); %shear contribution of shear reinforcement; Thf=1;%assume the flexural tensile force at the critical cross section Vtf=tana*Thf;%calculate the vertical component Mv=Thf*dv;%calculate the bending moment Va=Mv/(av);%calculate the applied shear force when Th is assumed; Vfa=1; Ftd=1.3*(Va-0.5*Vfa-Vtf);% additional tensile force Vt=tana*(Thf+Ftd*cos(at));%calculate the vertical component el=(Mv/dv+(Va-Vt))/2/(Ef*Af); theta=30+7000*el;%angle of compressive stress in concrete ko=cot(theta/180*pi); Vf=pfv*ffvu*b*dv*ko; while abs(Vf-Vfa)>1, Vfa=Vfa+1; Ftd=1.3*(Va-0.5*Vfa-Vtf);% additional tensile force Vt=tana*(Thf+Ftd*cos(at));%calculate the vertical component el=(Mv/dv+(Vf-Vt))/2/(Ef*Af); theta=30+7000*el;%angle of compressive stress in concrete ko=cot(theta/180*pi); Vf=pfv*ffvu*b*dv*ko; end Vu=(Vt+Vf+Vc);%calculate the total shear resistance; C0=abs(Va-Vu);%the difference between applied load and shear resistance %iteratation to find the answer. while C0>100, Thf=Thf+100; Vtf=tana*Thf;%calculate the vertical component Mv=Thf*(dv-Thf/(a1*fc*b)/2);%calculate the bending moment Va=Mv/(av);%calculate the applied shear force when Th is assumed; Vfa=1; Ftd=1.3*(Va-0.5*Vfa-Vtf);% additional tensile force Vt=tana*(Thf+Ftd*cos(at));%calculate the vertical component el=(Mv/dv+(Vf-Vt))/2/(Ef*Af); theta=30+7000*el;%angle of compressive stress in concrete ko=cot(theta/180*pi); Vf=pfv*ffvu*b*dv*ko; while abs(Vf-Vfa)>1, Vfa=Vfa+1; Ftd=1.3*(Va-0.5*Vfa-Vtf);% additional tensile force Vt=tana*(Thf+Ftd*cos(at));%calculate the vertical component el=(Mv/dv+(Vf-Vt))/2/(Ef*Af); theta=30+7000*el;%angle of compressive stress in concrete ko=cot(theta/180*pi); Vf=pfv*ffvu*b*dv*ko; end Vu=(Vt+Vf+Vc);%calculate the total shear resistance; C0=abs(Va-Vu);%the difference between applied load and shear resistance end Pvu=Vu*1.5;