
README FOR C++ CODE FOR

COMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF

EQUILIBRIUM: SEP AND KAWASAKI CODE

Contents

1. General remarks 1
2. Correspondence between the nomenclature in code and paper 2
3. How to use the code 2
3.1. Settings to be adjusted in main 2
3.2. Settings that should not be changed in main 3
3.3. Settings that can be adjusted outside of main 3
4. Settings used in the paper 3
5. The output files 5

1. General remarks

This readme is to introduce into using the C++ code written to test the numerical method for
computing diffusivities for the Simple Exclusion Process and Kawasaki Dynamics from particle models
out of equilibrium presented in:

Embacher, P., Dirr, N., Zimmer, J., Reina, C.: Computing diffusivities from particle models
out of equilibrium, Proc. R. Soc. A, DOI 10.1098/rspa.2017.0694 (arXiv:1710.03680).

Specifically, this code was used to create the data for the simple exclusion process (bottom row of
fig. 4-7 in the paper), the Kawasaki-type dynamics (fig. 10), the “sequential” method (fig. 9), the
performance comparison with mean square displacement (subsection 5e) as well as the parameter
dependence in fig. 8. For the exact settings used for these results, see section 4 of this text. The other
sections of this readme file are devoted to translating between the notation used in the code compared
to the one used in this paper (section 2), explaining the use of the code (section 3) and read its output
(section 5). To reproduce the data in the paper, it is enough to read sections 4 and 5.

The code is written in C++ and only requires the standard libraries included in C++98. It was
tested with Microsoft Visual C++ 2010 Express and Windows 7, where all the files of “finddiffusivity”
and “readdiffusivity” were each included in one project. The resulting two projects do not need to be
in the same file directory on the computer. In the following, the filenames always refer to the .cpp-file
of the respective name, whereas .h files are the corresponding headers and do not need be touched.

While there are many more options available in the code, this text only introduces the ones used
for the paper. Other settings may not have been tested recently and might not work properly.

1



README FOR C++ CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAKI CODE2

2. Correspondence between the nomenclature in code and paper

Code Paper Description
Nbin L number of sites in the particle system
Npart ≈ N approximate number of particles in the particle system

(up to a randomization and depending on the initial
profile η

(
tiniL

2, .
)
)

wait
(
t0 − tini

)
L2 total microscopical equilibration time before

measurements are started

fwait
(
t0 − tprep

)
L2 last part of microscopical equilibration time before

experiments are started, that is individual for each
measurement

dT hL2 microscopical time between initial and final state
sampling R1 number of samples starting from the initial profile

η
(
tiniL

2, .
)

(i.e. total number of samples during the time[
tini, tprep

]
)

fsampling R2 number of samples starting from each state η
(
tprepL

2, .
)

samplesize P number of samples in case of the sequential method
x0 x0 concentration point of test function γ

filterparameters a0, a1, a2 other parameters characterising the test functions γ

3. How to use the code

3.1. Settings to be adjusted in main. Almost all settings can be adjusted in the main function.
Note that many quantities are denoted by ranges (for instance Nbinrange instead of Nbin), which then
allows to insert a list of parameters (for instance Nbinrange[]={100,1000,10000};), which will then
be computed one after another. If for several quantites lists are given, then the following hierarchy
applies (first-mentioned quantities are set first):

sampling −→ fsampling −→ dT −→ wait −→ fwait −→ Nbin −→ Npart−→ x0,

i.e. for all other settings fixed, the code is run for all entries in the x0 list. Once this list is done for
this setting, the Npart is changed to the next setting in its Npartrange etc. Note that while the other
parameters lead to separate entries in the output textfiles, different x0-values are written in the same
entry. Also note that the algorithm only allows for filterfunctions γ, that vanish at zero and one, as it
gives wrong results for such a test function otherwise (other entries in a x0range are not affected by
this, though). Hence, particularly x0 = 0 or x0 = 1 are not allowed.

Additionally to the ones already given in the table of section 2, the following parameters can be set
in main:

• profile: This sets the initial profile (η
(
tiniL

2, .
)

up to rounding errors). The following options
are available (x ∈ [0, 1] is the macroscopic space-coordinate):

flat ≈ Npart
Nbin

sin ≈ Npart
Nbin · sin (πx)

1-cos ≈ Npart
Nbin ·

1
2 · (1− cos (2πx))

sintrans ≈ Npart
Nbin + 5 · sin

(
2π(x− 1

2 )
A

)
(withA = 1 by default and changeable in getrho old)



README FOR C++ CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAKI CODE3

• type: Determines the underlying stochastic process. ZRP denotes the zero range process (and
the random walk as a special case of zero range process)(to adjust the jump rates g see section
3.3 item 2), SEP the symmetric simple exclusion process and Kawasaki the Kawasaki-type
dynamic. Additionally, ZRP multitag can be chosen, which then automatically gets evaluated
via mean square displacement.
• mode: repeat stands for the “parallel” method, continuous for the “sequential” method

desribed in section 5d of the paper.
• name: Allows to add a suffix of choice to the names of the output files. Does not affect the

calculations. Must not contain space characters.

3.2. Settings that should not be changed in main. In particular, not to be changed are the follow-
ing settings in main: micresrange, samplingmode, initializationtype, repeattype, storagelength,
filtertype, interpolationtype, interpolationref, refinement.

3.3. Settings that can be adjusted outside of main. The following settings are not in the main

function, but can also be changed, if the default settings are not convenient:

• The names of output-files can be changed at the beginning of getfilename (for the output of
the textfile containing initial/final states via savestatetotext) and saveresultstotext (for
the output of the textfile containing the results and most characteristic data).
• The jump-rates per site in the zero range process (without any effect for the other processes):

This is done in g by commenting out the respective other option.
• Some parameters in the initial profiles η

(
tiniL

2, .
)

are set in getrho old, namely the horizontal
stretching A and the overall offset (see sintrans at line 36 onwards).

4. Settings used in the paper

Default settings in main of “finddiffusivity” are as follows:

• Nbinrange[] = {5000};
• Npartrange[] = {4750};
• waitrange[] = {100};
• fwaitrange[] = {0.1};
• dTrange[] = {0.001};
• samplingrange[] = {50};
• fsamplingrange[] = {2000};
• samplesizerange[] = {1};
• x0range[] = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};
• filterparameters.push back(1.);

filterparameters.push back(40.);

filterparameters.push back(2.);

• profile = "sin";

• type = "SEP";

• mode = "repeat";

Default settings in main of “readdiffusivity” are as follows:

• x0range[] = {0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25,0.275,0.3,
0.325,0.35,0.375,0.4,0.425,0.45,0.475,0.5,0.525,0.55,0.575,0.6,0.625,0.65,

0.675,0.7,0.725,0.75,0.775,0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975};



README FOR C++ CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAKI CODE4

• filterparameters.push back(1.);

filterparameters.push back(160.);

filterparameters.push back(2.);

For foldername and filename the respective directory and name of the output file for the measured
states of “finddiffusivity” (see second item of section 5) have to be inserted (with “\\” replacing the
delimiter “\” in the foldername).

For the specific settings that were applied for the images in the paper, see the table below. Here all
changes are to be applied in “finddiffusivity” and to main, unless otherwise stated. Also note that for
section 5e only the “finddiffusivity” code was used and no further post processing with “readdiffusivity”:

Image Setting in code
fig. 4, bottom
fig. 5, bottom Nbinrange[] = {2000}; with Npartrange[] = {1900};,

Nbinrange[] = {5000}; with Npartrange[] = {4750};,
Nbinrange[] = {10000}; with Npartrange[] = {9500};,
Nbinrange[] = {20000}; with Npartrange[] = {19000};,
Nbinrange[] = {50000}; with Npartrange[] = {47500};

fig. 6, bottom dTrange[] = {0.00001,0.0001,0.001,0.01,0.1,1,10};
fig. 7, bottom fsamplingrange[] = {20,50,100,200,500,1000,2000,5000};

fig. 8, left in “finddiffusivity”: Npartrange[] = {125000};, type = "ZRP";,
profile = "sintrans"; in main and
A = 100, A = 10, A = 1, A = 0.25, A = 0.1 in getrho old

in “readdiffusivity” (for each of the outputfiles from above):
filterparameters.push back(1.);

filterparameters.push back(a1);

filterparameters.push back(2.);

for a1 = 40, a1 = 80, a1 = 200, a1 = 320, respectively, in main

fig. 8, right in “finddiffusivity”: profile = "sintrans"; in main and
A = 100, A = 10, A = 1, A = 0.25, A = 0.1 in getrho old

in “readdiffusivity” (for each of the outputfiles from above):
filterparameters.push back(1.);

filterparameters.push back(a1);

filterparameters.push back(2.);

for a1 = 40, a1 = 80, a1 = 200, a1 = 320, respectively, in main

fig. 9 for all lines: samplingrange[] = {1};, fsamplingrange[] = {1};,
samplesizerange[] = {100000};, mode = "continuous";

for orange line also: Npartrange[] = {125000};, type = "ZRP"; in main and
g k = double(k*k); in g

for red line also: Npartrange[] = {125000};, type = "ZRP"; in main and
g k = double(k); in g

fig. 10 Npartrange[] = {125000};, type = "Kawasaki";, profile = "1-cos";



README FOR C++ CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAKI CODE5

Image Setting in code
sec. 5e for MSD for all: Npartrange[] = {25000};, dTrange[] = {0.25};,

samplingrange[] = {100};, fsamplingrange[] = {1};, x0range[]={0.5};,
filterparameters.push back(1.);

filterparameters.push back(160.);

filterparameters.push back(2.);, profile = ”flat”;, type = "ZRP multitag";

for random walk also: g k = double(k); in g

for ZRP with g (k) = k2 also: g k = double(k*k); in g

sec. 5e
for new method

for all: Npartrange[] = {25000};, samplingrange[] = {1};,
x0range[] = {0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16,0.18,0.2,0.22,0.24,
0.26,0.28,0.3,0.32,0.34,0.36,0.38,0.4,0.42,0.44,0.46,0.48,0.5,0.52,0.54,

0.56,0.58,0.6,0.62,0.64,0.66,0.68,0.7,0.72,0.74,0.76,0.78,0.8,0.82,0.84,

0.86,0.88,0.9,0.92,0.94,0.96,0.98};, filterparameters.push back(1.);

filterparameters.push back(160.);

filterparameters.push back(2.);, profile = ”flat”;, type = "ZRP";

for “parallel” also: fsamplingrange[] = {40000};
for “parallel” with less equilibration also: fwaitrange[] = {0};,
fsamplingrange[] = {40000};
for “sequential” also: samplingrange[] = {1};,
samplesizerange[] = {40000};, mode = "continuous";

for random walk also: g k = double(k); in g

for ZRP with g (k) = k2 also: g k = double(k*k); in g

sec. 5e for equi-
libration time

Npartrange[] = {25000};, samplingrange[] = {100};,
fsamplingrange[] = {0};, dTrange[] = {0.};, x0range[]={0.5};,
type = "ZRP multitag";

for random walk also: g k = double(k); in g

for ZRP with g (k) = k2 also: g k = double(k*k); in g

5. The output files

By default, the “finddiffusivity” code creates two external text files for each set of parameters (see
first paragraph in section 3.1) in the same file directory as its code is located:

• One is called “C++ results.txt” by default and contains the main results (with ten digits
precision). If the code is run several times, this file is appended with the last entry being the
youngest. As for the formatting, see fig. 5.1.
• One is named according to the chosen parameters of the system by default and contains all

the pairs of measured states η
(
t0L

2, .
)

and η
(
(t0 + h)L2, .

)
as well as some data about the

system, that is required to correctly post-process the data. This file is used by the algorithm to
access already measured states and may not be renamed or relocated on the hard-drive, while
the code is running. Note that this file can become rather large (several GB), depending on
the size of the stochastic process (Nbin) and the number of samples (sampling · fsampling).
If the code is run several times with identical parameters (i.e. the default file name is also the
same), this file gets appended with the newest data at the end, thus no data is lost. However,
the algorithm for the post-processing is not suited for having different datasets in the same
file and will therefore crash. Hence, if the same measurement is meant to be made several
times, it is advised to use a different name as suffix (see last item of section 3.1). Particularly,



README FOR C++ CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAKI CODE6

Figure 5.1. Example for the appearence of the results text file from “finddiffusivity” (see first

item in section 5), here with additional annotations in red to explain the file formatting.

the default name does not distinguish between ZRPs with different jumprates g, so this would
need to be manually indicated by respective suffixes as well.

Also “readdiffusivity” creates one text file, labelled “C++ read results.txt”, in the same file directory as
its code is located. This is structured similarly to the “C++ results.txt” file “finddiffusivity” generates.


