README FOR C++ CODE FOR
COMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF
EQUILIBRIUM: SEP AND KAWASAKI CODE

CONTENTS

1. General remarks

2. Correspondence between the nomenclature in code and paper
3. How to use the code

3.1. Settings to be adjusted in main

3.2. Settings that should not be changed in main

3.3. Settings that can be adjusted outside of main

4. Settings used in the paper

5. The output files

LW W WM NN

1. GENERAL REMARKS

This readme is to introduce into using the C++ code written to test the numerical method for
computing diffusivities for the Simple Exclusion Process and Kawasaki Dynamics from particle models
out of equilibrium presented in:

Embacher, P., Dirr, N., Zimmer, J., Reina, C.: Computing diffusivities from particle models
out of equilibrium, Proc. R. Soc. A, DOI 10.1098/rspa.2017.0694 (arXiv:1710.03680).

Specifically, this code was used to create the data for the simple exclusion process (bottom row of
fig. 4-7 in the paper), the Kawasaki-type dynamics (fig. 10), the “sequential” method (fig. 9), the
performance comparison with mean square displacement (subsection 5e) as well as the parameter
dependence in fig. 8. For the exact settings used for these results, see section 4 of this text. The other
sections of this readme file are devoted to translating between the notation used in the code compared
to the one used in this paper (section 2), explaining the use of the code (section 3) and read its output
(section 5). To reproduce the data in the paper, it is enough to read sections 4 and 5.

The code is written in C++ and only requires the standard libraries included in C4++498. It was
tested with Microsoft Visual C++ 2010 Express and Windows 7, where all the files of “finddiffusivity”
and “readdiffusivity” were each included in one project. The resulting two projects do not need to be
in the same file directory on the computer. In the following, the filenames always refer to the .cpp-file
of the respective name, whereas .h files are the corresponding headers and do not need be touched.

While there are many more options available in the code, this text only introduces the ones used
for the paper. Other settings may not have been tested recently and might not work properly.

1

README FOR C++4 CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAK

2. CORRESPONDENCE BETWEEN THE NOMENCLATURE IN CODE AND PAPER

Code Paper Description
Nbin L number of sites in the particle system
Npart ~N approximate number of particles in the particle system

(up to a randomization and depending on the initial
profile 7 (ti; L%, .))

wait (to — tini) L? total microscopical equilibration time before
measurements are started
fwait (to — tprep) L? | last part of microscopical equilibration time before
experiments are started, that is individual for each
measurement
daT hL? microscopical time between initial and final state
sampling Ry number of samples starting from the initial profile

n (tiniL?,-) (i-e. total number of samples during the time

[tinis tprep])

fsampling Ry number of samples starting from each state 7 (tprepLQ,)
samplesize P number of samples in case of the sequential method
x0 x concentration point of test function ~
filterparameters ap, a1, a2 other parameters characterising the test functions ~y

3. HOW TO USE THE CODE

3.1. Settings to be adjusted in main. Almost all settings can be adjusted in the main function.
Note that many quantities are denoted by ranges (for instance Nbinrange instead of Nbin), which then
allows to insert a list of parameters (for instance Nbinrange [1={100,1000,10000};), which will then
be computed one after another. If for several quantites lists are given, then the following hierarchy
applies (first-mentioned quantities are set first):

sampling — fsampling — dT — wait — fwait — Nbin — Npart— xO,

i.e. for all other settings fixed, the code is run for all entries in the x0 list. Once this list is done for
this setting, the Npart is changed to the next setting in its Npartrange etc. Note that while the other
parameters lead to separate entries in the output textfiles, different xg-values are written in the same
entry. Also note that the algorithm only allows for filterfunctions «, that vanish at zero and one, as it
gives wrong results for such a test function otherwise (other entries in a xOrange are not affected by
this, though). Hence, particularly 2o = 0 or 2o = 1 are not allowed.
Additionally to the ones already given in the table of section 2, the following parameters can be set
in main:
e profile: This sets the initial profile (7 (tiniLQv) up to rounding errors). The following options
are available (z € [0, 1] is the macroscopic space-coordinate):
flat ~ Jp2I
sin ~ NPT (mx)
Nbin

Npart
1-cos =~ ﬁ 1. (1 - cos (2mx))

r(a—1
sintrans ~ I\I\Fb?;c +5-sin (W) (with A = 1 by default and changeable in getrho_old)

README FOR C++4 CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAK

e type: Determines the underlying stochastic process. ZRP denotes the zero range process (and
the random walk as a special case of zero range process)(to adjust the jump rates g see section
3.3 item 2), SEP the symmetric simple exclusion process and Kawasaki the Kawasaki-type
dynamic. Additionally, ZRP_multitag can be chosen, which then automatically gets evaluated
via mean square displacement.

e mode: repeat stands for the “paralle]” method, continuous for the “sequential” method
desribed in section 5d of the paper.

e name: Allows to add a suffix of choice to the names of the output files. Does not affect the
calculations. Must not contain space characters.

3.2. Settings that should not be changed in main. In particular, not to be changed are the follow-
ing settings in main: micresrange, samplingmode, initializationtype, repeattype, storagelength,
filtertype, interpolationtype, interpolationref, refinement.

3.3. Settings that can be adjusted outside of main. The following settings are not in the main
function, but can also be changed, if the default settings are not convenient:

e The names of output-files can be changed at the beginning of getfilename (for the output of
the textfile containing initial/final states via savestatetotext) and saveresultstotext (for
the output of the textfile containing the results and most characteristic data).

e The jump-rates per site in the zero range process (without any effect for the other processes):
This is done in g by commenting out the respective other option.

e Some parameters in the initial profiles n (timLQ,) are set in getrho_old, namely the horizontal
stretching A and the overall offset (see sintrans at line 36 onwards).

4. SETTINGS USED IN THE PAPER

Default settings in main of “finddiffusivity” are as follows:

Nbinrange[] = {5000};
Npartrange[] = {4750};
waitrange[] = {100};
fwaitrange[] = {0.1};

dTrange[] = {0.001};
samplingrange[] = {50};
fsamplingrange[] = {2000};
samplesizerange[] = {1};
xOrange[] = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9};
filterparameters.push back(l.);
filterparameters.push back(40.);
filterparameters.push_back(2.);
e profile = "sin";

e type = "SEP";

e mode = "repeat";

Default settings in main of “readdiffusivity” are as follows:
e xOrange[] = {0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25,0.275,0.3,

0.325,0.35,0.375,0.4,0.425,0.45,0.475,0.5,0.525,0.55,0.575,0.6,0.625,0.65,
0.675,0.7,0.725,0.75,0.775,0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975};

README FOR C++4 CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAK

e filterparameters.push back(1l.);
filterparameters.push_back(160.);
filterparameters.push back(2.);

For foldername and filename the respective directory and name of the output file for the measured
states of “finddiffusivity” (see second item of section 5) have to be inserted (with “\\” replacing the
delimiter “\” in the foldername).

For the specific settings that were applied for the images in the paper, see the table below. Here all
changes are to be applied in “finddiffusivity” and to main, unless otherwise stated. Also note that for
section 5e only the “finddiffusivity” code was used and no further post processing with “readdiffusivity”:

Image Setting in code
fig. 4, bottom
fig. 5, bottom | Nbinrange[] = {2000}; with Npartrange[] = {1900};,
Nbinrange[] = {5000}; with Npartrange[] = {4750};,
Nbinrange[] = {10000}; with Npartrange[] = {9500};,
Nbinrange[] = {20000}; with Npartrange[] = {19000};,
Nbinrange[] = {50000}; with Npartrange[] = {47500};

fig. 6, bottom | dTrange[] = {0.00001,0.0001,0.001,0.01,0.1,1,10};
fig. 7, bottom fsamplingrange[] = {20,50,100,200,500,1000,2000,5000};
fig. 8, left in “finddiffusivity”: Npartrange[] = {125000};, type = "ZRP";,
profile = "sintrans"; in main and
A =100,A =10,A =1,A=0.25 A = 0.1 in getrho_old
in “readdiffusivity” (for each of the outputfiles from above):
filterparameters.push_back(l.);
filterparameters.push back(al);
filterparameters.push back(2.);
for a1 = 40, a1l = 80, a1l = 200, al = 320, respectively, in main
fig. 8, right in “finddiffusivity”: profile = "sintrans"; in main and
A =100,A = 10,A =1,A = 0.25, A = 0.1 in getrho_old
in “readdiffusivity” (for each of the outputfiles from above):
filterparameters.push_back(l.);
filterparameters.push_back(al);
filterparameters.push_back(2.);
for a1 = 40, a1l = 80, a1 = 200, al = 320, respectively, in main
fig. 9 for all lines: samplingrange[] = {1};, fsamplingrange[] = {1};,
samplesizerange[] = {100000};, mode = "continuous";
for orange line also: Npartrange[] = {125000};, type = "ZRP"; in main and
gk = double(k*k); in g
for red line also: Npartrange[] = {125000};, type = "ZRP"; in main and
gk = double(k); ing
fig. 10 Npartrange[] = {125000};, type = "Kawasaki";, profile = "1-cos";

README FOR C++4 CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAK

Image Setting in code
sec. be for MSD | for all: Npartrange[] = {25000};, dTrange[] = {0.25};,
samplingrange[] = {100};, fsamplingrange[] = {1};, xOrange[]1={0.5};,
filterparameters.push back(l.);
filterparameters.push back(160.);
filterparameters.push_back(2.);, profile = "flat”;, type = "ZRP_multitag";
for random walk also: gk = double(k); in g
for ZRP with g (k) = k? also: gk = double(k*k); in g
sec. be for all: Npartrange[] = {25000};, samplingrange[] = {1};,
for new method | xOrange[] = {0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16,0.18,0.2,0.22,0.24,
0.26,0.28,0.3,0.32,0.34,0.36,0.38,0.4,0.42,0.44,0.46,0.48,0.5,0.52,0.54,
0.56,0.58,0.6,0.62,0.64,0.66,0.68,0.7,0.72,0.74,0.76,0.78,0.8,0.82,0.84,
0.86,0.88,0.9,0.92,0.94,0.96,0.98};, filterparameters.push back(1.);
filterparameters.push back(160.);
filterparameters.push_back(2.);, profile = "flat”;, type = "ZRP";
for “parallel” also: fsamplingrange[] = {40000};
for “parallel” with less equilibration also: fwaitrangel[] = {0};,
fsamplingrange[] = {40000};
for “sequential” also: samplingrange[] = {1};,
samplesizerange[] = {40000};, mode = "continuous";
for random walk also: gk = double(k); in g
for ZRP with g (k) = k? also: g k = double(k*k); in g
sec. be for equi- | Npartrange[] = {25000};, samplingrange[] = {100};,
libration time | fsamplingrangel[] = {0};, dTrange[] = {0.};, xOrange[1={0.5};,
type = "ZRP_.multitag";
for random walk also: gk = double(k); in g
for ZRP with g (k) = k? also: gk = double(k*k); in g

5. THE OUTPUT FILES

By default, the “finddiffusivity” code creates two external text files for each set of parameters (see
first paragraph in section 3.1) in the same file directory as its code is located:

e One is called “C++ results.txt” by default and contains the main results (with ten digits
precision). If the code is run several times, this file is appended with the last entry being the
youngest. As for the formatting, see fig. 5.1.

e One is named according to the chosen parameters of the system by default and contains all
the pairs of measured states (tOLz,) and 7 ((to +h) L2,) as well as some data about the
system, that is required to correctly post-process the data. This file is used by the algorithm to
access already measured states and may not be renamed or relocated on the hard-drive, while
the code is running. Note that this file can become rather large (several GB), depending on
the size of the stochastic process (Nbin) and the number of samples (sampling - fsampling).
If the code is run several times with identical parameters (i.e. the default file name is also the
same), this file gets appended with the newest data at the end, thus no data is lost. However,
the algorithm for the post-processing is not suited for having different datasets in the same
file and will therefore crash. Hence, if the same measurement is meant to be made several
times, it is advised to use a different name as suffix (see last item of section 3.1). Particularly,

README FOR C++4 CODE FORCOMPUTING DIFFUSIVITIES FROM PARTICLE MODELS OUT OF EQUILIBRIUM: SEP AND KAWASAK

2. 5. 2017 €—m date, when measurement was completed

state (ZRP, dT=0.00016, Nbin=2000, micres=1, Npart=31824, allsamples=50x2000x1, wait=16, fwait=0.016, repeat, stsa, suw_const(1)_sin_ru_1-100000).txt (_meoftextﬁle with
samplingxfsampling: 50%2000 (combined) <€ R xR underlying states
interpolation: refinement: 1 type: const , interpolationref = 1 . .

filter-parameters: 1 40 2 (sw) <«€—————————— parameters as, a1, & in the test fanctions () {(V1)2.0) (w71
x0: 0.1 0.2 0.3 0.4 2.5 0.6 0.7 0.8 0.9 <€—— concentration points xo of the test functions Pa 7). i ((1)
eta_old_a: 7.73199885 14.69013162 20.20296514 23.7360409 24.9809467 23.75763361 20.19250106 14.70628453 7.734737277 for initial and final time t, to+h
rho_new_a: 7.731999112 1469013056 20.20296522 23.73604351 24.,98094599 23.75763402 20,19249994 14,70628529 7.73473847 and test function with resp. %
sigma(rho(x)): 1.006428106 1.005615528 ©.9930517741 ©.9962679806 ©.9971116376 ©.9953054602 0.986023714 1.007511726 0.9971131866

stdderr: 0.01175364661 ©.009052010802 0.008076863501 0.007572155025 ©.007524203874 0.00772604323 0.008016643341 0.009106763879 949118119515250- =2m/y,

<g,drho/dt>: 215.3153236 374.2415402 263.9099249 371.4102633 -1237.345533 394.6229946 19.90563732 -53.99730998 220.9527493 and its statistical stand. error
diametent: 757.4787307 1437.984093 1952.917637 2301.874942 2424.655678 2301.743036 1938.092032 1442.279723 750.7337354

sterdiametent: 8.84627254 12.94396037 15.88381351 17.49544726 18.29645042 17.86724469 15.75721999 13.03657371 8.893303856

Time-consumption so far with storagelength = 2

2479.282 sec. @— L
computation time in seconds

29. 5. 2017

state (ZRP, dT=0.001, Nbin=5000, micres=1, Npart=79557, allsamples=5ex2@eex1, wait=1ee, fwait=0.1, repeat, stsa, sw_const(1)_sin_rw_1-100000).txt
samplingxfsampling: 50x2000 (combined)
interpolation: refinement: 1 type: const , interpolationref =1 data of later measurements
filter-parameters: 1 40 2 (sw)

x0: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

eta_old_a: 7.713726639 14.68936962 20.20529328 23.75833982 25.00195351 23.7492205 20.20988709 14.67487764 7.718673908

rho_new_a: 7.713726584 14.68936991 20.20529315 23.75834079 25.00195576 23.74922038 20.20988568 14.67487877 7.71867488

sigma(rho(x)): 1.001854847 1.00209111 1.006473151 0.9999625861 1.00220188 1.004688895 1.002387779 0.9943725699 1.004922341

stdderr:]

.005244759643 ©.004890098871 ©.004876231545 ©0.004716279422 ©.004772847183 0.004776832838 ©0.004808302945 0.00485418432 ©0.005321989524)

FIGURE 5.1. Example for the appearence of the results text file from “finddiffusivity” (see first
item in section 5), here with additional annotations in red to explain the file formatting.

the default name does not distinguish between ZRPs with different jumprates g, so this would
need to be manually indicated by respective suffixes as well.
Also “readdiffusivity” creates one text file, labelled “C++ read results.txt”, in the same file directory as
its code is located. This is structured similarly to the “C++ results.txt” file “finddiffusivity” generates.

