
README FOR CODE USED IN
Harnessing fluctuations to discover dissipative evolution equations

Xiaoguai Li, Nicolas Dirr, Peter Embacher, Johannes Zimmer, and Celia Reina

April 2019

Contents

1 Overview 3

2 Zero Range Process (folder 1 ZeroRangeProcess) 3

2.1 Overview of the code: Main file and functions . 3

2.2 Parameters and options of the code . 4

2.3 Running the code . 5

2.4 Output of the code and postprocessing . 5

2.5 Parameters used to generate the figures in the paper 5

3 Postprocessing (folder 2 Postprocessing) 5

3.1 Code and test data . 5

3.2 Output of the code and further steps . 6

4 Independent fit of the components (folder 3a IndependentFit) 6

4.1 Real dataset from the zero range process after postprocessing 6

4.2 Code overview . 6

4.3 Options of the code . 7

4.4 Output of the code . 7

5 Fit of components with mass conservation constraint (folder 3b FitWithConstraint) 7

5.1 Real dataset from zero range process after postprocessing 7

5.2 Code and parameters . 8

5.3 Output of the code . 8

1

6 Macroscopic simulations (folder 4 MacroSimulations) 8

6.1 Code overview . 8

6.2 Options of the code . 8

6.3 Parameters of the code . 9

6.4 Output of the code . 9

6.5 Options and parameters used to generate the figures in the paper 9

2

1. Overview

This file explains all codes used in

Harnessing fluctuations to discover dissipative evolution equations , by Xiaoguai Li, Nicolas Dirr,
Peter Embacher, Johannes Zimmer, and Celia Reina.

to generate Figures 3-6 as well as the embedded movies. Specifically, the generation of the figures
required four steps: simulations of the zero range process, data post-processing to convert particle
fluctuations to components of the discretized dissipative operator, fit of these components (inde-
pendently or accounting for mass conservation as a constraint), and macroscopic simulations. The
names of the folders and their corresponding purpose are listed here.

• 1 ZeroRangeProcess: C++ code to carry out multiple realizations of a zero range process
(see Section 2 for further details).

• 2 Postprocessing: Matlab code to compute each component of the discretized dissipative
operator from particle data for discrete values of ρ and ∇ρ (see Section 3 for further details).

• 3a IndependentFit: Matlab code to obtain a polynomial fit of each independent nonzero
component of the discretized operator in the space (ρ,∇ρ) (see Section 4 for further details).

• 3b FitWithConstraint: Matlab code to perform a fit to the nonzero components of the
discretized operator that satisfies mass conservation — this is imposed as a constraint — (see
Section 5 for further details).

• 4 MacroSimulations: Matlab code to perform coarse graining and compute particle-based
solution. (Fig.5, Fig.6(b) and supplementary movies) (see Section 6 for further details).

g++11 compiler is needed for the codes in folder 1 ZeroRangeProcess, and all Matlab codes in-
cluded in this project were tested with Matlab R2014b.

2. Zero Range Process (folder 1 ZeroRangeProcess)

2.1. Overview of the code: Main file and functions

The folder 1 ZeroRangeProcess is composed of the following files.

• Main.cpp: Main file to be launched where parameters are set and options are selected (see
next subsection for details).

• SavingParameters.h/.cpp: Function that saves the parameters set in the Main file.

• InitialProfile.h/.cpp: Function that generates the initial density profile according to the
parameters and options selected.

• ZRP KMC fixedBoundary.h/cpp: Functions that advances the density profile using a
Lattice Kinetic Monte Carlo algorithm, and considering Dirichlet (fixed) boundary conditions.

• Postprocessing.h/cpp: Function that evaluates and saves 〈ρε(t0), γ1〉, 〈ρε(t0 + h), γ1〉,
〈ρε(t0), γ2〉, 〈ρε(t0 + h), γ2〉, . . . for each realization.

3

2.2. Parameters and options of the code

The following variables and options can be adjusted in the Main file. Their equivalent name in the
paper and their meaning is provided below.

• Configuration and process parameters:
process this option can only be set to “ZRP”.
profile this option can be set as “flat”, “linear” or “triangle” to generate a flat pro-

file, a linear profile or a triangular profile. Note that the profile is randomly
perturbed in InitialProfile.cpp. Flat profile uses parameters “Nbin” and
“Npart”. “Linear” and “triangle” profile uses parameters “Nbin”, “slope”
and “center”.

Nbin number of bins
Npart number of particles
slope this is only useful when profile is set to be “linear” or “triangle”. It sets

slope of linear profile, or the positive slope for the triangular profile (the
magnitudes of positive and negative slopes are identical in the triangular
profile).

center this is only useful when profile is set to be “linear” or “triangle”. It is the
value at the center of the profile.

• Macroscopic time parameters:
t equilibration tprep − tini, time of equilibration.
t randomize t0 − tprep, time to prepare the system for a new realization.
h h, simulation time for actual measurements.

• Sampling parameters:
R1 R1

R2 R2

• Basis function parameters:
Ngamma1 Number of gamma functions in the first basis.
Ngamma2 Number of gamma functions in the second basis.

Note: The code is set to postprocess the same ZRP data with two sets
of basis functions, although only results from one of them is shown in the
paper.

• Output options:
file path1 Directory where the user wants the save the output of the first group of

basis functions.
file path2 Directory where the user wants the save the output of the second group of

basis functions.

In addition, the type of Zero Range Process can be set inside the function ZRP KMC fixedBoundary.cpp,
by adjusting the parameter “power” to 1.0 or 2.0, for instance, for g(k)=k and g(k)=k2, respec-
tively. All simulations in the article used the value 2.0.

4

2.3. Running the code

The following commands may be typed on the terminal to compile the code

>> module load gcc/6.3.0

>> g++ -std=gnu++0x -O3 Main.cpp InitialProfile.cpp ZRP KMC new.cpp Postprocessing.cpp

SavingParameters.cpp -o executable name

where the first command is needed to load version C++11 in order to use the random variable
generator used in the code.

2.4. Output of the code and postprocessing

After running the executable, the code generates in each filename path, one summary file and R1
data files:

• Summary.m: contains all the parameters prescribed in the Main file.

• Data 0.m: each row contains 〈ρε(t0), γ1〉, 〈ρε(t0 + h), γ1〉, 〈ρε(t0), γ2〉, 〈ρε(t0 + h), γ2〉, . . . for
each realization r ∈ [1 :R2], i.e. there are R2 rows. The number in this data file name ranges
from 0 to R1.

This data compiles the information of all realizations of a single profile, and can be further postpro-
cessed using the code in folder 2 Postprocessing to deliver the expected values of ρ and ∇ρ, and
each nonzero component of the dissipative operator discretized using the γ functions. We remark
that each profile must be postprocessed independently.

2.5. Parameters used to generate the figures in the paper

The default parameters for Figures 4-6 are:

Nbin t equilibration t randomize h R1 R2 Ngamma x basis

5000 4e-06 4e-09 4e-11 400 2000 40 [0.0:0.025:0.975]

Profile: “flat” was used with Npart = [20000:500:50000]; For the data with conservation constraint,
“linear” was used with slope = ±[5, 11] and center = 7, and “triangle” was used with slope =
±[15, 19] and center = 7; For the data without conservation constraint, “linear” was used with
slope = [-13:1:13] and center = 7, and “triangle” was used with slope = [14:1:19] and [-19:1:-14],
and center = 7.

3. Postprocessing (folder 2 Postprocessing)

3.1. Code and test data

Folder 2 Postprocessing includes the following files.

• Postprocessing.m: the Matlab script used to do postprocessing of the data from the zero
range process, and estimate the elements of the operator that are expected to be non-zero.

5

• Summary.m: output file from the previous code, cf. Section 2.4. Postprocessing.m reads
this file, and writes new data at the end of it after postprocessing. Specifically, it provides
the expected value for the following quantities for each pair of neighboring γ functions:

ρb, ∇ρb, 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb〉, using variable names rho b b, drho b b and di-
agonal b b, respectively.

ρb,∇ρb, 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb+1〉, using variable names rho b bPlus1, drho b bPlus1
and off b bPlus1

ρb,∇ρb, 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb−1〉, using variable names rho b bMinus1, drho b bMinus1
and off b bMinus1

We remark that for a given pair of neighboring γ functions, these are denoted as γb and γb+1

(from left to right), for the purposes of computing 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb〉 and
〈K(ρb+∇ρ|b(x−xb)+...)γb, γb+1〉, and the same functions are labeled as γb−1 and γb (from left to
right), for the purpose of computing 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb−1〉. For this reason, the vectors
rho b b, rho b bPlus1 and rho b bMinus1 do not coincide.

• Data 0.m, ..., Data 4.m: Output files from the previous code, cf. Section 2.4.

The files Summary.m, Data 0.m, ..., Data 4.m provided in the folder correspond to an example
with R1 = 5 and R2 = 200, which may be used to test the code Postprocessing.m. The real
dataset is too large to be attached here.

3.2. Output of the code and further steps

The output is added to Summary.m, as previously explained.

4. Independent fit of the components (folder 3a IndependentFit)

4.1. Real dataset from the zero range process after postprocessing

The previous code delivers a Summary.m file for a specific density profile, that contains the
three nonzero components of the discretized operators as a function of discrete values ρ and ∇ρ,
probed with such profile. The results from the various profiles must then be compiled into sin-
gle vectors rho b b, drho b b, diagonal b b, rho b bPlus1, drho b bPlus1, off b bPlus1
rho b bMinus1, drho b bMinus1, off b bMinus1 and saved in a Data.mat Matlab file. The
file Data.mat included in folder 3a IndependentFit corresponds to the actual data used in the
paper.

4.2. Code overview

There are three scripts used to fit three nonzero components in discretized operator independently.
Their names and purposes are listed below.

• fit dia b b.m: polynomial fit of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb〉 as a function of ρb and ∇ρb.

6

• fit off b bPlus1.m: polynomial fit of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb+1〉 as a function of ρb and
∇ρb.

• fit off b bMinus1.m: polynomial fit of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb−1〉 as a function of ρb and
∇ρb.

4.3. Options of the code

There are three fit options in these three scripts, which can be set by parameter ’fitID’, and
determines the order of the polynomial in the variables ρb and ∇ρb.

fitID order in ρb order in ∇ρb
22 2 2

21 2 1

20 2 0

In Figure 4, all nonzero components are fit with fitID=22.

4.4. Output of the code

These three scripts give the following outputs.

fit parameters
dia fit 22.mat Fit parameters of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb〉

with fitID=22.
off b bMinus1 fit 22.mat Fit parameters of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb−1〉

with fitID=22.
off b bPlus1 fit 22.mat Fit parameters of 〈K(ρb+∇ρ|b(x−xb)+...)γb, γb+1〉

with fitID=22.

figures
dia b b.fig Plots of the raw data and fitted surface.
off b bMinus1.fig
off b bPlus1.fig

errorPlot
error dia 22.fig Plots of the relative error between the fitted

results and analytic values, known for the
zero range process considered. In practice,
analytic values of the nonzero components
are not necessarily known.

error off b bMinus1 22.fig
error off b bPlus1 22.fig

Files dia fit 22.mat, off b bMinus1 fit 22.mat and off b bPlus1 fit 22.mat will be used to
carry out the macroscopic simulations.

5. Fit of components with mass conservation constraint (folder 3b FitWithConstraint)

5.1. Real dataset from zero range process after postprocessing

The file Data.mat included in folder 3b FitWithConstraint contains the actual data used in
Fig. 6 of the paper using the following scripts, and corresponds to a subset of the data included
in 3a IndependentFit/Data.mat. The variable names are identical to the ones of the previous
Section, and these are explained in Subsections 3.1 and 4.1.

7

5.2. Code and parameters

There is a single script in this folder, optimization threeComponents.m, which is the Matlab
script used to fit the three nonzero components together so as to guarantee mass conservation.
Specifically, this conservation constraint implies that sum of these three components is zero, which
is directly imposed by reducing the number of unknown polynomial coefficients (similarly to before,
a quadratic polynomial in both ρb and ∇ρb is considered). An objective error function is defined as
the L2 norm of the difference between the raw data and the quadratic surface, and this is minimized
using a quasi-Newton method to identify the optimal polynomial coefficients.

5.3. Output of the code

These three scripts give the following outputs.

fitParameter.mat Fit parameters for the quadratic polynomial target functions.

error dia 22.fig Plots of the relative error between the fitted results and
analytic values, known for the zero range process considered.
In practice, analytic values of the nonzero components are not
necessarily known.

error off b bMinus1 22.fig
error off b bPlus1 22.fig

The file fitParameter.mat will serve as input data for the macroscopic simulations.

6. Macroscopic simulations (folder 4 MacroSimulations)

6.1. Code overview

In folder 4 MacroSimulations there are two Matlab scripts used to perform coarse graining.
Their names and purposes are listed below.

• MacroEvolution.m: main script that delivers the macroscopic evolution using the particle-
based operator and the analytical operator.

• prepare analytic m.m: function used in main script, which prepares the analytic mobility
m used in the computation of the analytic solution.

• grad.m: function used in main script, which computes gradient for an array, with consider-
ation of periodic boundary condition.

6.2. Options of the code

There are two main options in the code that enable the user to choose between the constrained
or unconstrained fit of the discrete operator components, and to specify the type of boundary
conditions to be used in the macroscopic simulations. In all cases, a macroscopic domain [0, 1] is
considered in Figs. 5 and 6 of the article.

constraint
0 Reads fit result from independent fit.
1 Reads fit result from fit with conservation constraint.

boundaryCondition
’periodic’ Periodic boundary conditions.
’Dirichlet’ Dirichlet boundary conditions.

8

6.3. Parameters of the code

• Discretization parameters:

Ngamma number of basis functions. This value needs to be in agreement with the
value of Ngamma used to postprocess the particle data.

dx mesh size (dx=1/Ngamma)
dt discretization in time
T total simulation time
timesteps total simulation steps (timesteps=T/dt)

• Initial profile:

density 0 initial profile (t=0) as a function of x

• Video setting:

dump number of frames
v video name and format
v.FrameRate frame speed

• Output snapshots:

snapshots specify time to output snapshots; real simulation time is set to be snap-
shots/1000

6.4. Output of the code

Output of the code includes two parts:

• movies: this code automatically makes a directory named ’movies’, and saves in it a movie
of the analytical evolution and the particle-based evolution.

• snapshots: this code automatically makes a directory named ’snapshots’, and saves in it
the data of the analytic profile and the particle-based profile at the inquired times. An
independent data file is created for each inquired time, and their names coincide with the
values entered in the vector snapshots (see parameters of the code).

6.5. Options and parameters used to generate the figures in the paper

Options :

Figures; Movies constraint boundaryCondition snapshots density 0

Fig. 5(a); Movie1 0 ’periodic’ [1 3 6 10] -3*cos(2*pi*x/xfinal)+7

Fig. 5(b); Movie2 0 ’Dirichlet’ [1 3 8] -5*cos(3*pi*x/xfinal)+7

Fig. 6(b); Movie3 1 ’periodic’ [1 3 6 10] -3*cos(2*pi*x/xfinal)+7

CommonParameters :

Ngamma dx dt T dump v.FrameRate

40 0.025 6.2500e-07 0.01 100 5

9

	Overview
	Zero Range Process (folder 1_ZeroRangeProcess)
	Overview of the code: Main file and functions
	Parameters and options of the code
	Running the code
	Output of the code and postprocessing
	Parameters used to generate the figures in the paper

	Postprocessing (folder 2_Postprocessing)
	Code and test data
	Output of the code and further steps

	Independent fit of the components (folder 3a_IndependentFit)
	Real dataset from the zero range process after postprocessing
	Code overview
	Options of the code
	Output of the code

	Fit of components with mass conservation constraint (folder 3b_FitWithConstraint)
	Real dataset from zero range process after postprocessing
	Code and parameters
	Output of the code

	Macroscopic simulations (folder 4_MacroSimulations)
	Code overview
	Options of the code
	Parameters of the code
	Output of the code
	Options and parameters used to generate the figures in the paper

