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David John Wilson
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1 Introduction

This file contains a collection of examples for use in evaluating algorithms related
to cylindrical algebraic decomposition.

This file is stored permanently at http://www.cs.bath.ac.uk/~djw42/
triangular/examplebank.pdf. This file is intended as a reference file for
the Maple file (stored at http://www.cs.bath.ac.uk/~djw42/triangular/
examplebank.txt) and the Qepcad file (stored at http://www.cs.bath.ac.
uk/~djw42/triangular/QEPCADexamplebank.txt).

Each example is given as a Tarski formula or list of polynomials followed by
a list of free variables, a list of quantified variables, a suggested variable order
(if any), the number of cells in a minimally achievable full CAD (with details of
how to reproduce), notes on the problem, and the source.

1.1 Paper-specific Details

The following examples have been used in the stated papers:

• “Speeding up Cylindrical Algebraic Decomposition by Gröbner Bases” by
D. J. Wilson, R. J. Bradford and J. H. Davenport:

– From Section 2: 2, 4, 6–8, 13–14;

– From Section 5: 1–5;

– From Section 6: 12–13.

Note that Example 5.4 and Example 2.15 are actually reformulations of the
same Solotareff problem. An explanation for this is given at http://www.cs.
bath.ac.uk/~djw42/triangular/solotareff3.pdf.
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2 Examples from [CMXY09]

2.1 Parametric Parabola

(∃ x) [ax2 + bx + c = 0] (1)

Free Variables: a, b, c.
Quantified Variables: x.
Suggested variable order: x > c > b > a.
Best achievable number of cells:
Notes:
Source: [CMXY09]

2.2 Whitney Umbrella

(∃ u)(∃ v) [x− uv = 0 ∧ y − v = 0 ∧ z − u2 = 0] (2)

Free Variables: x, y, z.
Quantified Variables: u, v.
Suggested variable order: v > u > z > y > x.
Best achievable number of cells:
Notes:
Source: [CMXY09]

2.3 Quartic

(∀ x) [x4 + px2 + qx + r ≥ 0] (3)

Free Variables: p, q, r.
Quantified Variables: x.
Suggested variable order: x > p > q > r
Best achievable number of cells:
Notes:
Source: [Laz88]

2.4 Sphere and Catastrophe

z2 + y2 + x2 − 1 = 0 z3 + xz + y = 0 (4)

Free Variables: x, y, z.
Quantified Variables:
Suggested variable order: x > y > z
Best achievable number of cells:
Notes: Full CAD
Source: [McC88]
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2.5 Arnon-84

y4 − 2y3 + y2 − 3x2y + 2x4 = 0 (5)

Free Variables: x, y.
Quantified Variables:
Suggested variable order: y > x.
Best achievable number of cells:
Notes:
Source: [CMA82]

2.6 Arnon-84-2

144y2 + 96x2y + 9x4 + 105x2 + 70x− 98 = 0 (6)

xy2 + 6xy + x3 + 9x = 0 (7)

Free Variables: x, y.
Quantified Variables:
Suggested variable order: y > x.
Best achievable number of cells:
Notes:
Source: [CMA82]

2.7 A Real Implicitization Problem

(∃ u)(∃ v)
[
x− uv = 0 ∧ y − uv2 = 0 ∧ z − u2 = 0

]
(8)

Free Variables: x, y, z.
Quantified Variables: u, v.
Suggested variable order: v > u > z > y > x.
Best achievable number of cells:
Notes:
Source: [DSS04]

2.8 Ball and Circular Cylinder

(∃ z)(∃ x)(∃ y)
[
[x2 + y2 + z2 − 1 < 0] ∧ [x2 + (y + z − 2)2 − 1 < 0]

]
(9)

Free Variables:
Quantified Variables: x, y, z.
Suggested variable order: z > x > y
Best achievable number of cells:
Notes: Decides whether the intersection of the open ball with radius 1 cen-

tered at the origin and the open circular cylinder with radius 1 and axis the line
x = 0, y + z = 2 is nonempty.

Source: [McC88]
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2.9 Termination of Term Rewrite System

(∃ r)(∀ x)(∀ y)
[
[x− r > 0] ∧ [y − r > 0]

−→ [x2(1 + 2y)2 − y2(1 + 2x2) > 0]
]

(10)

Free Variables:
Quantified Variables: r, x, y.
Suggested variable order: r > x > y.
Best achievable number of cells:
Notes: Decides whether we should orient the equation (xy)−1 = y−1x−1 into

(xy)−1 → y−1x−1 in order to get a terminating rewrite system for group theory.
It uses a polynomial interpretation: xy ⇒ x + 2xy, x−1 ⇒ x2, and 1⇒ 2.

Source: [CH91]

2.10 Collins and Johnson

(∃ r)
[
[3a2r + 3b2 − 2ar − a2 − b2 < 0]

∧ [3a2r + 3b2r − 4ar + r − 2a2 − 2b2 + 2a > 0]

∧ [a− 1
2
≥ 0] ∧ [b > 0] ∧ [r > 0] ∧ [r − 1 < 0]

]
(11)

Free Variables: a, b.
Quantified Variables: r.
Suggested variable order: r > a > b.
Best achievable number of cells:
Notes: Necessary and sufficient conditions on the complex conjugate roots

a± bi so that there exists a cubic polynomial with a single real root r in (0, 1)
yet more than one variation is obtained.

Source: [CH91]

2.11 Range of Lower Bounds

(∀ x)(∀ a)(∀ b)(∀ c)(∃ z)
[ [

(a > 0) ∧ (az2 + bz + c 6= 0)
]

−→
[
y < ax2 + bx + c

] ]
(12)

Free Variables: y.
Quantified Variables: a, b, c, x, z.
Suggested variable order:
Best achievable number of cells:
Notes:
Source: [DSS04]
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2.12 X-axis Ellipse Problem

ab 6= 0 ∧

(∀ x)(∀ y)
[ [

b2(x− c)2 + a2y2 − a2b2 = 0
]
−→

[
x2 + y2 − 1 ≤ 0

] ]
(13)

Free Variables: a, b, c.
Quantified Variables: x, y.
Suggested variable order: y > x > b > c > a.
Best achievable number of cells:
Notes:
Source: [DSS04]

2.13 Davenport and Heintz

(∃ c)(∀ b)(∀ a)
[[

a− d = 0 ∧ b− c = 0
]
∨
[
a− c = 0 ∧ b− 1 = 0

]
−→ a2 − b = 0

]
(14)

Free Variables: d.
Quantified Variables: a, b, c.
Suggested variable order: a > b > c > d
Best achievable number of cells:
Notes: A special case of a more general formula.
Source: [DH88],[CH91]

2.14 Hong-90

(∃ a)(∃ b)
[

[r + s + t = 0] ∧ [rs + st + tr − a = 0] ∧ [rst − b = 0]
]

(15)

Free Variables: r, s, t.
Quantified Variables: a, b.
Suggested variable order: b > a > t > s > r.
Best achievable number of cells:
Notes:
Source: [Hon90]

2.15 Solotareff-3

(∃ u)(∃ v)
[
[r > 0] ∧ [r − 1 > 0] ∧ [u + 1 > 0] ∧ [u− v < 0] ∧

[v − 1 < 0] ∧ [3u2 + 2ru− a = 0] ∧ [3v2 + 2rv − a = 0] ∧

[u3 + ru2 − au + a− r − 1 = 0] ∧ [v3 + rv2 − av − 2b− a + r + 1 = 0]
]

(16)

Free Variables:a, b, r, u, v.
Quantified Variables:
Suggested variable order: b > u > v > r > a.
Notes: A reformulation of Solotareff’s problem using the outline in [Ach56].
Source: [CMXY09], [Ach56]
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2.16 Collision Problem

(∃ t)(∃ x)(∃ y)
[
[
17
16

t− 6 ≥ 0] ∧ [
17
16

t− 10 ≤ 0]

∧ [x− 17
16

t + 1 ≥ 0] ∧ [x− 17
16

t− 1 ≤ 0]

∧ [y − 17
16

t + 9 ≥ 0] ∧ [y − 17
16

t + 7 ≤ 0]

∧ [(x− t)2 + y2 − 1 ≤ 0]
]

(17)

Free Variables:
Quantified Variables: t, x, y.
Suggested variable order: t > x > y.
Notes: Collision of two semi-algebraic objects: a circle with radius 1, initially

centered at (0, 0) and moving with velocity vx = 1 and vy = 0; a square with
side-length 2, initially centered at (0,−8) and moving with velocity vx = 17

16 and
vY = 17

16 .
Source: [CH91]

2.17 McCallum Trivariate Random Polynomial

(y − 1)z4 + xz3 + x(1− y)z2 + (y − x− 1)z + y (18)

Free Variables: x, y, z.
Quantified Variables:
Suggested variable order: z > y > x.
Best achievable number of cells:
Notes:
Source: [McC88]

2.18 Ellipse Problem

[ab 6= 0] ∧ (∀ x)(∀ y)
[
[b2(x− c)2 + a2(y − d)2 − a2b2 = 0]

−→ [x2 + y2 − 1 ≤ 0]
]

(19)

Free Variables: a, b, c, d.
Quantified Variables: x, y.
Suggested variable order: y > x > d > c > b > a.
Best achievable number of cells:
Notes:
Source: [CMXY09]
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3 Branch Cut Examples

3.1 Square Root Identity

Identity in question:
√

z − 1
√

z + 1 ?=
√

z2 − 1

{[x− 1 < 0] ∧ [y = 0]} (20)
{[x + 1 < 0] ∧ [y = 0]} (21){

[x2 − y2 − 1 < 0] ∧ [xy = 0]
}

. (22)

Free Variables: x, y.
Quantified Variables:
Suggested Variable Order: x > y.
Best achievable number of cells:
Notes: Branch cuts for the three square-roots. Input into QEPCAD should

be with ∨ between each set.
Source: [Phi11]

3.2 Arctan Identity

Identity in question: arctan(x) + arctan(y) ?= arctan
(

x+y
1−xy

)
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4 Motion Planning Examples

4.1 Piano Mover’s Problem (Davenport)

[
[(x− x′)2 + (y − y′)2 − 9 = 0] ∧

[[yy′ ≥ 0] ∨ [x(y − y′)2 + y(x′ − x)(y − y′) ≥ 0]] ∧
[[(y − 1)(y′ − 1) ≥ 0] ∨ [(x + 1)(y − y′)2 + (y − 1)(x′ − x)(y − y′) ≥ 0]] ∧

[[xx′ ≥ 0] ∨ [y(x− x′)2 + x(y′ − y)(x− x′) ≥ 0]] ∧

[[(x + 1)(x′ + 1) ≥ 0] ∨ [(y − 1)(x− x′)2 + (x + 1)(y′ − y)(x− x′) ≥ 0]]
]
.

(23)

Free Variables: x, x′, y, y′.
Quantified Variables:
Suggested Variable Order:
Best achievable number of cells:
Notes:
Source: [Dav86]
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5 Examples from Buchberger–Hong [BH91]

5.1 Intersection

(∃ z)
[
[x2 − 1

2
y2 − 1

2
z2 = 0] ∧ [xz + zy − 2x = 0] ∧ [z2 − y = 0]

]
. (24)

Quantified Variables: z.
Free Variables: x, y.
Suggested variable order:
Minimal achieved number of cells:
Notes:
Source: [BH91]

5.2 Random

(∃ x)(∀ y)(∃ z)
[
[4x2 + xy2 − z +

1
4

= 0] ∧

[2x + y2z +
1
2

= 0] ∧ [x2z − 1
2
x− y2 = 0]

]
. (25)

Quantified Variables: x, y, z.
Free Variables:
Suggested variable order:
Minimal achieved number of cells:
Notes:
Source: [BH91]

5.3 Ellipse

(∃ x)(∃ y)
[
[x2 + y2 − 1 = 0] ∧ [b2(x− c)2 + a2y2 − a2b2 = 0]

∧ [a > 0] ∧ [a < 1] ∧ [b > 0] ∧ [b < 1] ∧ [c ≥ 0] ∧ [c < 1]
]
. (26)

Quantified Variables: x, y.
Free Variables: a, b, c.
Suggester variable order:
Minimal achieved number of cells:
Notes: Inspired by Kahan’s problem. Instead of having the ellipse contained

in the circle, this looks for an intersection.
Source: [BH91]

5.4 Solotareff

(∃ x)(∃y)
[
[3x2 − 2x− a = 0] ∧ [x3 − x2 − ax− 2b + a− 2 = 0]

∧ [3y2 − 2y − a = 0] ∧ [y3 − y2 − ay − a + 2 = 0] ∧ [1 ≤ 4a] ∧ [4a ≤ 7]

∧ [−3 ≤ 4b] ∧ [4b ≤ 3] ∧ [−1 ≤ x] ∧ [x ≤ 0] ∧ [0 ≤ y] ∧ [y ≤ 1]
]
. (27)
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Quantified Variables: x, y.
Free Variables: a, b.
Suggested variable order:
Minimal achieved number of cells:
Notes:
Source: [BH91]

5.5 Collision

(∃ t)(∃ x)(∃ y)
[
[
1
4

(x− t)2 − (y − 10)2 − 1 = 0]

∧ [
1
4

(x− at)2 + (y − at)2 − 1 = 0] ∧ [t > 0] ∧ [a > 0]
]
. (28)

Quantified Variables: t, x, y.
Free Variables: a.
Suggested variable order:
Minimal achieved number of cells:
Notes: In this problem t stands for time and the problem describes two

ellipses with semi-axes 2 and 1. One is centered at (0, 10) moving with horizontal
velocity 1. The other is centered at the origin and moving with velocity (a, a).
The problem decides if the ellipses collide.

Source: [BH91]

10



6 Other Examples

6.1 Off-Center Ellipse

[a 6= 0] ∧ (∀ x)(∀ y)
[
[16a2y2 − 8a2y + 4x2 − 4x− 3a2 + 1 = 0]

−→ [y2 + x2 − 1 ≤ 0]
]

(29)

Free Variables: a.
Quantified Variables: x, y.
Suggested variable order:
Best achievable number of cells:
Notes: Deciding if an off-center ellipse with center ( 1

2 , 1
4 ), semi–major axis

a and semi–minor axis 1
2 lies within the unit circle centered at the origin.

Source: [AM88]

6.2 Concentric Circles

x2 + y2 − 9 = 0 (30)

x2 + y2 − 1 = 0 (31)

Free Variables: x, y.
Quantified Variables:
Suggested variable order: y > x.
Best achievable number of cells: 41
Notes:
Source: [Dav11]

6.3 Non-Concentric Circles

x2 + y2 − 9 = 0 (32)

x2 + (y − 1)2 − 1 = 0 (33)

Free Variables: x, y.
Quantified Variables:
Suggested variable order: y > x.
Best achievable number of cells: 41
Notes: Note that an extra spurious point is added compared to the concentric

case - corresponding to the “complex intersection” of the circles.
Source: [Dav11]

6.4 Edges Square Product

(∃ x1)(∃ x2)(∃ y2)
[

[x = x1x2 − y2] ∧ [y = x1y2 + x + 2]

∧ [0 ≤ x1] ∧ [x1 ≤ 2] ∧ [2 ≤ x2] ∧ [x2 ≤ 4] ∧ [−1 ≤ y2]

∧ [y2 ≤ 1] ∧ [−1 ≤ x] ∧ [x ≤ 9] ∧ [−6 ≤ y] ∧ [y ≤ 6]
]

(34)
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Free Variables: x, y
Quantified Variables:x1, x2, y2

Suggested variable order:
Best achievable number of cells:
Notes: Originally stated by Collins. Solution given in Figure 1.
Source: [BG06]

6.5 Simplified Edges Square Product

(∃ x1)
[

[−x1 ≤ 0] ∧ [x1 ≤ 2] ∧ [0 ≤ 1 + x] ∧ [x ≤ 9] ∧

[0 ≤ y + 6] ∧ [y ≤ 6] ∧ [0 ≤ −(x2
1 + 1)(−y − x1x + 2x2

1 + 2)] ∧
[(−x + x1y)(x2

1 + 1) ≤ (x2
1 + 1)2] ∧ [x2

1 + 1 6= 0] ∧

[0 ≤ (x2
1 + 1)(x2

1 + 1− x + x1y)] ∧ [(x2
1 + 1)(y + x1x) ≤ 4(x2

1 + 1)2]
]

(35)

Free Variables: x, y
Quantified Variables: x1

Suggested variable order:
Best achievable number of cells:
Notes: Simplified version of the Edges Square Product given in [BG06] using

x2 = y − x1y2 and y2 = (−x + x1y)/(x2
1 + 1). Solution given in Figure 1.

Source: [BG06]

6.6 Putnum Example

(∃ x1)(∃ y1)(∃x2)(∃y2)
[

x2
1 + y2

1 − 1 = 0 ∧ (x2 − 10)2 + y2
2 − 9 = 0

∧ x =
x1 + x2

2
∧ y =

y1 + y2

2

]
(36)

Free Variables: x, y.
Quantified Variables: x1, y1, x2, y2

Suggested variable order:
Best achievable number of cells:
Notes: Problem 2 from the 57th Putnam competition. What points are

halfway between the points on the unit circle centered on the origin and a circle
with radius 3 centered at (10, 0). Solution shown in blue in Figure 3.

Source: [BG06]

6.7 Simplified Putnum

(∃ x1)(∃ y2)
[

(x2
1 + 4y2 − 4yy2 + y2

2 − 1 = 0)

∧ (4x2 − 4xx1 − 40x + x2
1 + 20x1 + 91 + y2

2 = 0)
]

(37)

Free Variables: x, y.
Quantified Variables: x1, y2
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Suggested variable order:
Best achievable number of cells:
Notes: The Putnum example following simplifications x2 := 2x − x1 and

y1 := 2y − y2. Solution shown in blue in Figure 3.
Source: [BG06]

6.8 YangXia

(∃ s)(∃ b)(∃ c)
[

(a2h2 − 4s(s− a)(s− b)(s− c) = 0) ∧ (2Rh− bc = 0) ∧

(2s− a− b− c = 0) ∧ (b > 0) ∧ (c > 0) ∧ (R > 0) ∧ (h > 0) ∧

(a + b− c > 0) ∧ (b + c− a > 0) ∧ (c + a− b > 0)
]
. (38)

Free Variables: a, h,R.
Quantified Variables: s, b, c.
Suggested variable order:
Best achievable number of cells:
Notes:
Source: [BG06]

6.9 Simplified YangXia

(∃ b)
[

(−1
2
b 6= 0) ∧ (0 < R) ∧ (0 < b) ∧ (0 < h) ∧

(
1
16

a2h2b4− 1
32

a2b6− 1
8
a2R2h2b2− 1

8
R2h2b4 +

1
64

b8 +
1
64

a4b4 +
1
4
R4h4 = 0) ∧

(0 < −1
4

(−ab− b2 + 2Rh)b) ∧ (0 <
1
2
Rhb) ∧

(0 <
1
4

(2Rh + ab− b2)b) ∧ (0 <
1
4

(b2 + 2Rh− ab)b)
]
. (39)

Free Variables: a, h,R
Quantified Variables: b.
Suggested variable order: b > a > h > R.
Best achievable number of cells:
Notes: Simplified YangXia using s := 1

2 (a + b + c) and c := 2Rh
b .

Source: [BG06]

6.10 SEIT Model

(∃ s)(∃ F )(∃ J)(∃ T )
[

[d− ds− b1Js = 0] ∧ [vF − (d + r2)J = 0] ∧

[b1J +b2JT −(d+v+r1)F +(1−q)r2J = 0] ∧ [−dT +r1F +qr2J−b2TJ = 0] ∧
[F > 0] ∧ [J > 0] ∧ [T > 0] ∧ [s > 0] ∧ [b1 > 0] ∧ [d > 0] ∧

[v > 0] ∧ [r1 > 0] ∧ [r2 > 0] ∧ [q > 0] ∧ [b1 > b2]
]
. (40)

Free Variables: b1, b2, d, q, r1, r2, v.
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Quantified Variables: s, F, J, T .
Suggested variable order:
Best achievable number of cells:
Notes: SEIT Model is used in epidemic modeling. This problem asks for the

existence of an endemic equilibrium.
Source: [BG06]

6.11 Simplified SEIT Model

(∃ J)
[
[0 < d] ∧ [0 < r1] ∧ [0 < r2] ∧ [0 < q] ∧ [b2 < b1] ∧ [0 < v] ∧

[0 < J ] ∧ [0 < b1] ∧ [0 < b2] ∧ [d + Jb1 6= 0] ∧ [−v 6= 0] ∧
[0 < (d + r2)Jv] ∧ [vb2 6= 0] ∧ [0 < d(d + Jb1)] ∧

[0 < (d + Jb1)b2v(−dvb1 + d2v + d2r2 + dvr2q + d3 + d2r1 + Jb1vr2q+

dr2r1 + Jb1dv + Jb1dr2 + Jb1r2r1 + Jb1d
2 + Jb1dr1)] ∧

[−(d + Jb1)b2v
3d(−dvb1 − Jb1vb2 + d2v + d2r1 + dvr2q + d3+

b2Jd2 + d2r2 + dr2r1 + b2Jdv + b2Jdr2 + Jb1dv + Jb1dr1 + Jb1vr2q+

Jb1d
2 + J2b1db2 + Jb1dr2 + Jb1r2r1 + J2b1b2v + J2b1r2b2) = 0]

]
. (41)

Free Variables: b1, b2, d, q, r1, r2, v.
Quantified Variables: J .
Suggested variable order: J > r1 > q > r2 > b2 > v > d > b1

Best achievable number of cells:
Notes: Simplified using F := (d + r2)J/v, factorization and substitution of

J := 0, T := (−vb1s + dr1 + vr2q + d2 + dv + dr2 + r2r1)/(vb2) and v := 0,
as well as the substitution s := d/(d + Jb1) and cutting of all contradicting
subformulas.

Source: [BG06]

6.12 Cyclic—3

(∃ b)(∃ c)
[
[a + b + c = 0] ∧ [ab + bc + ca = 0] ∧ [abc− 1 = 0]

]
. (42)

Free Variables: a.
Quantified Variables: b, c.
Suggested variable order: c > b > a.
Best achievable number of cells:
Notes:
Source:

6.13 Cyclic—4

(∃ b)(∃ c)(∃ d)
[
[a + b + c + d = 0] ∧ [ab + bc + cd + da = 0] ∧

[abc + bcd + cda + dab = 0] ∧ [abcd− 1 = 0]
]
. (43)
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Free Variables: a.
Quantified Variables: b, c, d.
Suggested variable order: c > b > a.
Best achievable number of cells:
Notes:
Source:

6.14 Kauers11-1

x2 + y2 − 4 (44)
(x− 1)(y − 1)− 1. (45)

Free Variables: x, y.
Quantified Variables:
Suggested variable order: x > y.
Best achievable number of cells: 59
Notes:
Source: [Kau11]
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A Figures

The following are a list of figures to accompany the examples.

Figure 1: CAD produced for the Edges Square Product problem

Figure 2: Partial CAD generated from the Simplified Putnum problem
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Figure 3: Solution set for the Putnum example, plotted with the original circles.

Figure 4: 2D-CAD produced for the simplified YangXia problem (R against h)

Figure 5: Projected 2D-CAD produced for the X-axis ellipse problem
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