
> >

> >

> >

> >

> >

> >

> >

restart;
We are using the standard Maple 16 Library
libname:="/home/me350/Programs/Maple16/lib":

We make use of the following packages:
with(RegularChains):
with(SemiAlgebraicSetTools):

Additionally, we use Maple code written at the University of Bath: The ProjectionCAD package
(should be hosted alongside this worksheet).
read("ProjectionCAD.mpl"):
with(ProjectionCAD):

"This is V3.18 of the ProjectionCAD module from 11th February 2015, designed and tested for use in
Maple 18."

Throughout the paper we focussed on some worked examples to demonstrate our ideas. We
demonstrate how the cell counts reported were obtained.

Section 1.3
In this section we introduced the following polynomials
f1:=x^2+y^2-1;
g1:=x*y-1/4;
f2:=(x-4)^2+(y-1)^2-1;
g2:=(x-4)*(y-1)-1/4;

f1 d y2Cx2K1

g1 d y xK
1
4

f2 d xK4 2C yK1 2K1

g2 d xK4 yK1 K
1
4

We use variable ordering y>x
vars:=[y,x]:
R:=PolynomialRing(vars):

The standard sign-invariant CAD procedure in Maple builds a CAD with 317 cells (as does Qepcad
- see qepcad folder).
CylindricalAlgebraicDecompose([f1,g1,f2,g2], R, output=list):
nops(%);

317

Qepcad can also use the implict EC to build a CAD with 249 cells.

> >

> >

> >

> >

> >

> >

> >

Section 3.3
We again use
f1:=x^2+y^2-1;
g1:=x*y-1/4;
f2:=(x-4)^2+(y-1)^2-1;
g2:=(x-4)*(y-1)-1/4;

f1 d y2Cx2K1

g1 d y xK
1
4

f2 d xK4 2C yK1 2K1

g2 d xK4 yK1 K
1
4

vars:=[y,x]:
R:=PolynomialRing(vars):

We calculate projection sets, induced CADs of the real line and CADs of the plane for the worked
example Phi under different projection operators.

First, using McCallum's sign-invariant operator P(A):
CADProjection([f1,g1,f2,g2], vars, method=McCallum):
remove(X->X in [f1,f2,f3,f4], %);

x, xK5, xK4, xK3, xK1, xC1, 4 y xK1, x2K4 xC1, 68 x2K272 xC285, 16 x4K16 x2

C1, 4 y xK16 yK4 xC15, 16 x4K256 x3C1520 x2K3968 xC3841, 16 x4K128 x3

C256 x2K8 xC1, 16 x4K128 x3C256 x2C8 xK31, y2Cx2K2 yK8 xC16
CADFull([f1,g1,f2,g2], vars, method=McCallum, retcad=1,
output=list): nops(%);

41
CADFull([f1,g1,f2,g2], vars, method=McCallum, output=list):
nops(%);

317

Second with McCallum's operator for an EC (implicit in this case) P[E](A):
ECCADProjFactors([f1*f2, [f1,f2,g1,g2]], vars):
remove(X->X in [f1,f2,f3,f4], %);

xK5, xK3, xK1, xC1, y xK
1
4

, x2K4 xC
285
68

, x4Kx2C
1
16

, y xKxK4 yC
15
4

, x4

K16 x3C95 x2K248 xC
3841
16

, x4K8 x3C16 x2K
1
2

 xC
1
16

, x4K8 x3C16 x2C
1
2

 x

K
31
16

, y2Cx2K2 yK8 xC16

ECCAD([f1*f2, [f1,f2,g1,g2]], vars, retcad=1, output=list):
nops(%);

> >

> >

> >

> >

> >

> >

> >

33
ECCAD([f1*f2, [f1,f2,g1,g2]], vars, output=list): nops(%);

145

Qepcad's approach using this projection gives 249. The difference is actually in the lifting (see
Section x.x).

Third with the new TTICAD operator.
TTICADProjFactors([[f1,[g1]], [f2,[g2]]], vars):
remove(X->X in [f1,f2,f3,f4], %);

xK5, xK3, xK1, xC1, y xK
1
4

, x2K4 xC
285
68

, x4Kx2C
1
16

, y xKxK4 yC
15
4

, x4

K16 x3C95 x2K248 xC
3841
16

, y2Cx2K2 yK8 xC16

TTICAD([[f1,[g1]], [f2,[g2]]], vars, retcad=1, output=list):
nops(%);

25
TTICAD([[f1,[g1]], [f2,[g2]]], vars, output=list): nops(%);

105

We also consider Psi. The sign-invariant approach would be the same while the EC approach is no
longer valid. The TTICAD approach, however, still gives savings.
TTICADProjFactors([[f1,[g1]], [[],[f2,g2]]], vars):
remove(X->X in [f1,f2,f3,f4], %);

xK5, xK4, xK3, xK1, xC1, y xK
1
4

, x2K4 xC
285
68

, x4Kx2C
1
16

, y xKxK4 yC
15
4

,

x4K16 x3C95 x2K248 xC
3841
16

, x4K8 x3C16 x2C
1
2

 xK
31
16

, y2Cx2K2 yK8 x

C16

TTICAD([[f1,[g1]], [[],[f2,g2]]], vars, retcad=1, output=
list): nops(%);

31
TTICAD([[f1,[g1]], [[],[f2,g2]]], vars, output=list): nops
(%);

183

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Example 22
vars:=[w,z,y,x]:
R:=PolynomialRing(vars):
f := x + y + z + w;
g := z*y - x^2*w;

f d xCyCzCw

g dKx2 wCz y
CADFull([f,g], vars, method=McCallum, output=list): nops(%);

557
TTICAD([[f,[g]]], vars, output=list): nops(%);

165

The example has only one clause and so the projection theory is just that of McCallum's 1999 paper.

The point of the example is to show that our improved lifting avoids theoretical failure from non-
well-orientedness.
Compare with Qepcad which produces 221 cells but also an error message warning against the
validity of the output.

Example 23
f1:=x^2+y^2-1; g1:=x*y-1/4;

f1 d y2Cx2K1

g1 d y xK
1
4

vars:=[y,x]:
R:=PolynomialRing(vars):

SI CAD of real line has 15 cells, i.e. identifies 7 points.
CADFull([f1,g1], vars, method=McCallum, retcad=1, output=list):
nops(%);

15

SI CAD of plane:
CADFull([f1,g1], vars, method=McCallum, output=list): nops(%);

83

Using the EC:
ECCAD([f1,[g1]], vars, output=list): nops(%);

53

Look at the cell divisions. For x<-1 there is no splitting according to g1 (which Qepcad does)
ECCAD([f1,[g1]], vars, output=piecewise);

regular_chain, K2, K2 , 0, 0

regular_chain, K1, K1 , K1, K1 y ! 0

regular_chain, K1, K1 , 0, 0 y = 0

regular_chain, K1, K1 , 1, 1 0 ! y

regular_chain, K
63
64

, K
63
64

, K2, K2 y !K Kx2C1

regular_chain, K
63
64

, K
63
64

, K
1
4

, K
1
8

y =K Kx2C1

regular_chain, K
63
64

, K
63
64

, K
1
16

, K
1
16

K Kx2C1 ! y ! Kx2C1

regular_chain, K
63
64

, K
63
64

, 0,
1
4

y = Kx2C1

regular_chain, K
63
64

, K
63
64

, 2, 2 Kx2C1 ! y

regular_chain, K
31
32

, K
123
128

, K2, K2 y !K Kx2C1

regular_chain, K
31
32

, K
123
128

, K
3
8

, K
1
8

y =K Kx2C1

regular_chain, K
31
32

, K
123
128

, 0, 0 K Kx2C1 ! y ! Kx2C1

regular_chain, K
31
32

, K
123
128

,
1
8

,
3
8

y = Kx2C1

regular_chain, K
31
32

, K
123
128

, 2, 2 Kx2C1 ! y

regular_chain, K
313
512

, K
313
512

, K2, K2 y !K Kx2C1

regular_chain, K
313
512

, K
313
512

, K1, K
3
4

y =K Kx2C1

regular_chain, K
313
512

, K
313
512

, 0, 0 K Kx2C1 ! y ! Kx2C1

regular_chain, K
313
512

, K
313
512

,
3
4

, 1 y = Kx2C1

regular_chain, K
313
512

, K
313
512

, 2, 2 Kx2C1 ! y

RootOf 16 _Z

regular_chain, K
67
256

, K
33
128

, K2, K2 y !K Kx2C1

regular_chain, K
67
256

, K
33
128

, K1, K
7
8

y =K Kx2C1

regular_chain, K
67
256

, K
33
128

, 0, 0 K Kx2C1 ! y ! Kx2C1

> >

> >

> >

> >

> >

> >

> >

Example 24
f1:=x^2+y^2-1;
g1:=x*y-1/4;
f2:=(x-4)^2+(y-1)^2-1;
g2:=(x-4)*(y-1)-1/4;

f1 d y2Cx2K1

g1 d y xK
1
4

f2 d xK4 2C yK1 2K1

g2 d xK4 yK1 K
1
4

vars:=[y,x]:
R:=PolynomialRing(vars):
ECCAD([f1*f2,[f1,f2,g1,g2]], vars): nops(%);

145

Example 25
f1:=x^2+y^2+z^2-1;
g1:=x*y*z-1/4;
f2:=(x-4)^2+(y-1)^2+(z-2)^2-1;
g2:=(x-4)*(y-1)*(z-2)-1/4;

f1 d x2Cy2Cz2K1

g1 d x y zK
1
4

f2 d xK4 2C yK1 2C zK2 2K1

g2 d xK4 yK1 zK2 K
1
4

vars:=[z,y,x]:
R:=PolynomialRing(vars):

TTICAD([[f1,[g1]], [f2,[g2]]], [z,y,x], output=list): nops(%);
109

ECCAD([f1*f2, [f1,f2,g1,g2]], [z,y,x], output=list): nops(%);
353

> >

> >

> >

> >

> >

> >

> >

Example 32
f := z + y*w;
g := y*x + 1;
h := w*(z+1) + 1;

f d y wCz
g d y xC1

h d w zC1 C1
vars:=[w,z,y,x]:
R:=PolynomialRing(vars):
CADR4 := TTICAD([[f,[g,h]]], vars, output=listwithrep): nops
(%);

467
CADR3 := TTICAD([[f,[g,h]]], vars, output=listwithrep,
retcad=3): nops(%);

169

Note that f is nullified when y=z=0. I.e. on these 5 cells:
select(X->X[2][2..2]=[y=0], CADR3):
select(X->X[2][3..3]=[z=0], %); nops(%);
1, 4, 4 , x ! 0, y = 0, z = 0 , regular_chain, K1, K1 , 0, 0 , 0, 0 , 2, 4, 4 , x = 0, y
= 0, z = 0 , regular_chain, 0, 0 , 0, 0 , 0, 0 , 3, 6, 4 , 0 ! x ! 4, y = 0, z = 0 ,
regular_chain, 2, 2 , 0, 0 , 0, 0 , 4, 4, 4 , x = 4, y = 0, z = 0 , regular_chain, 4,

4 , 0, 0 , 0, 0 , 5, 6, 4 , 4 ! x, y = 0, z = 0 , regular_chain, 5, 5 , 0, 0 , 0, 0
5

The lifting set varies from cell to cell:
select(X->X[1][1..3]=[2,4,4], CADR4);
2, 4, 4, 1 , x = 0, y = 0, z = 0, w !K1 , regular_chain, 0, 0 , 0, 0 , 0, 0 , K2, K2 ,

2, 4, 4, 2 , x = 0, y = 0, z = 0, w =K1 , regular_chain, 0, 0 , 0, 0 , 0, 0 , K1,
K1 , 2, 4, 4, 3 , x = 0, y = 0, z = 0, K1 !w , regular_chain, 0, 0 , 0, 0 , 0, 0 , 0,
0
select(X->X[1][1..3]=[2,4,1], CADR4);
2, 4, 1, 1 , x = 0, y = 0, z !K1, w = w , regular_chain, 0, 0 , 0, 0 , K2, K2 , 0, 0

> >

> >

Example 33
Kahan:=2*arccosh(1+2*z/3)-arccosh((5*z+12)/(3*(z+4))) = 2*
arccosh(2*(z+3)*sqrt((z+3)/(27*(z+4))));

Kahan d 2 arccosh 1C
2 z
3

Karccosh
5 zC12
3 zC12

= 2 arccosh 2 zC3
zC3

27 zC108
FAout := FunctionAdvisor(branch_cuts, lhs(Kahan) - rhs(Kahan),
plot=2d, title="", color=red, thickness=3);

R z
K5 K4 K3 K2 K1 0 1 2

I z

K2

K1

1

2

FAoutd 2 arccosh 1C
2 z
3

Karccosh
5 zC12
3 zC12

K2 arccosh 2 zC3
zC3

27 zC108
,

K4 ! z, K
9
2

! z !K4, I z =
K4 R z 2K28 R z K45 R z C3

2 R z C5
And K

9
4

!R z , I z =K
K4 R z 2K28 R z K45 R z C3

2 R z C5
And K

9
4

!R z , I z

> >

> >

> >

> >

> >

> >

=
K4 R z 2K28 R z K45 R z C3

2 R z C5
And R z %K3 And K

9
2

!R z , I z

=
K4 R z 2K28 R z K45 R z C3

2 R z C5
And K

5
2

!R z And R z !K
9
4

, I z =

K
K4 R z 2K28 R z K45 R z C3

2 R z C5
And R z %K3 And K

9
2

!R z , I z =

K
K4 R z 2K28 R z K45 R z C3

2 R z C5
And K

5
2

!R z And R z !K
9
4

We turn these descriptions of branch cuts into 7 pairs of equations and inequalities
BC := [[4*y*(2*x^3+2*x*y^2+21*x^2+5*y^2+72*x+81), [-4*x^4+4*y^4
-52*x^3+12*x*y^2-225*x^2+63*y^2-324*x]], [2*y, [2*x+9]], [8*y,
[8*x^2+8*y^2+56*x+96]], [y, [x^2+y^2+7*x+12]], [4*y*(2*x^3+2*x*
y^2+21*x^2+5*y^2+72*x+81), [-4*x^4+4*y^4-52*x^3+12*x*y^2-252*
x^2+36*y^2-540*x-432]], [4*y*(2*x^3+2*x*y^2+21*x^2+5*y^2+72*
x+81), [4*x^4-4*y^4+52*x^3-12*x*y^2+225*x^2-63*y^2+324*x]], [2*
y, [-6-2*x]], [2*y, [2*x]], [8*y, [-8*x^2-8*y^2-56*x-96]], [8*
y, [2*x^2+2*y^2+8*x]]];

BC d 4 y 2 x3C2 y2 xC21 x2C5 y2C72 xC81 , K4 x4C4 y4K52 x3C12 y2 xK225 x2

C63 y2K324 x , 2 y, 2 xC9 , 8 y, 8 x2C8 y2C56 xC96 , y, x2Cy2C7 x

C12 , 4 y 2 x3C2 y2 xC21 x2C5 y2C72 xC81 , K4 x4C4 y4K52 x3C12 y2 x

K252 x2C36 y2K540 xK432 , 4 y 2 x3C2 y2 xC21 x2C5 y2C72 xC81 , 4 x4

K4 y4C52 x3K12 y2 xC225 x2K63 y2C324 x , 2 y, K6K2 x , 2 y, 2 x , 8 y,

K8 x2K8 y2K56 xK96 , 8 y, 2 x2C2 y2C8 x
F := map(X->op([op(1,X),op(op(2,X))]), BC);

F d 4 y 2 x3C2 y2 xC21 x2C5 y2C72 xC81 , K4 x4C4 y4K52 x3C12 y2 xK225 x2

C63 y2K324 x, 2 y, 2 xC9, 8 y, 8 x2C8 y2C56 xC96, y, x2Cy2C7 xC12, 4 y 2 x3

C2 y2 xC21 x2C5 y2C72 xC81 , K4 x4C4 y4K52 x3C12 y2 xK252 x2C36 y2K540 x

K432, 4 y 2 x3C2 y2 xC21 x2C5 y2C72 xC81 , 4 x4K4 y4C52 x3K12 y2 xC225 x2

K63 y2C324 x, 2 y, K6K2 x, 2 y, 2 x, 8 y, K8 x2K8 y2K56 xK96, 8 y, 2 x2C2 y2C8 x
CADFull(F, [y,x], method=McCallum): nops(%);

409
TTICAD(BC, [y,x]): nops(%);

55
CADFull(F, [x,y], method=McCallum): nops(%);

1143
TTICAD(BC, [x,y]): nops(%);

39

> >

> >

> >

Example 34
f1 := (y-1) - x^3 + x^2 + x;
f2 := (-y-1) - x^3 + x^2 + x;
g1 := y - x/4 + 1/2;
g2 := -y - x/4 + 1/2;

f1 dKx3Cx2CxCyK1

f2 dKx3Cx2CxKyK1

g1 d yK
x
4

C
1
2

g2 dKyK
x
4
C

1
2

ECCAD([f1, [f2,g1,g2]], [y,x]): nops(%);
ECCAD([f2, [f1,g1,g2]], [y,x]): nops(%);

39
39

TTICAD([[f1,[g1]], [f2,[g2]]], [y,x]): nops(%);
31

