# Data sets for the Journal of Statistical Mechanics: Theory and Experiment article entitled "Ordering on different length scales in liquid and amorphous materials"

Data sets used to prepare Figures 1-10 & 12 in the Journal of Statistical Mechanics: Theory and Experiment article entitled "Ordering on different length scales in liquid and amorphous materials".

Figure 1 shows representative structure factors S(k) for several amorphous materials plotted as a function of kd where d is the nearest-neighbour distance.

Figure 2 shows the number-number partial structure factor S_{NN}(k) measured for amorphous silicon (solid curve), amorphous germanium (broken [red] curve) and the network-forming glasses SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d is the Si-Si or Ge-Ge bond distance for amorphous silicon and germanium, respectively, or the A-X bond distance for the network glasses.

Figure 3 shows the measured concentration-concentration partial structure factor S_{CC}(k) for glassy SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d = r_{AX} is the A-X bond distance.

Figure 4 shows the measured number-concentration partial structure factor S_{NC}(k) for glassy SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d = r_{AX} is the A-X bond distance.

Figure 5 shows (a) the measured fragility index m as a function of the bond angle θ_{AXA}^{CS} for several AX_2 glass-forming systems; (b) the dependence of the height ratio of the peaks in S_{NN}(k) at k_1 and k_2 on the bond angle θ_{AXA}^{CS}; and (c) the A-X-A bond angle distribution n(θ_{AXA}) calculated using a polarisable ion model.

Figure 6 shows the pressure dependence of the measured total structure factor S(k) for glassy (a) ^{73}GeO_2 and (b) GeSe_2 plotted as a function of kd, where d = r_AX is the A-X bond distance. In (a) the neutron S(k) function is given for glassy ^{73}GeO_2, and in (b) the neutron S(k) function is compared to the X-ray S(k) function for glassy GeSe_2. In all cases, S(k) ≃ S_{NN}(k).

Figure 7 shows the decay of the total and number-number pair-distribution functions for liquid Au_{0.81}Si_{0.19} and glassy ZnCl_2.

Figure 8 shows the measured partial structure factor S_{AA}(k) for glassy SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d = r_{AA}^{CS} is the nearest-neighbour distance for corner-sharing tetrahedra. Also shown is S(k) versus kd for amorphous silicon and germanium where d = r_{SiSi} or d = r_{GeGe}, and S_{OO}(k) versus kd for LDA ice where d = r_{OO}.

Figure 9 shows the measured partial structure factor S_{XX}(k) for glassy SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d = r_{XX} is the position of the first major peak in the corresponding partial pair-distribution function g_{XX}(r).

Figure 10 shows the measured partial structure factor S_{AX}(k) for glassy SiO_2, GeO_2, ZnCl_2 and GeSe_2, plotted as a function of kd where d = r_{AX} is the A-X bond distance obtained from the first peak in the corresponding partial pair-distribution function g_{AX}(r).

Figure 12 shows a comparison between the Cl-Cl-Cl bond angle distribution for glassy ZnCl_2 generated by the reverse Monte Carlo (RMC) method, the bond angle distribution obtained from a hard sphere Monte Carlo (HSMC) simulation of the glass, and the bond angle distribution obtained from the large 7934 sphere random close packing model of Bernal and co-workers.

Cite this dataset as:

Salmon, P.,
Zeidler, A.,
2019.
*Data sets for the Journal of Statistical Mechanics: Theory and Experiment article entitled "Ordering on different length scales in liquid and amorphous materials".*
Bath: University of Bath Research Data Archive.
Available from: https://doi.org/10.15125/BATH-00600.

### Export

### Data

Fig1_Sofk_v6.agr

text/plain (185kB)

Creative Commons: Attribution 4.0

Figure 1

Fig2_NN_partials_v5.agr

text/plain (101kB)

Creative Commons: Attribution 4.0

Figure 2

Fig3_CC_partials_v2.agr

text/x-c (65kB)

Creative Commons: Attribution 4.0

Figure 3

Fig4_NC_partials.agr

text/x-c (67kB)

Creative Commons: Attribution 4.0

Figure 4

Fig5_MXM_angle_ ... ragility_v3.agr

text/plain (94kB)

Creative Commons: Attribution 4.0

Figure 5

Fig6_SNN_pressure_v2.agr

text/plain (266kB)

Creative Commons: Attribution 4.0

Figure 6

Fig7_decay_AuSi_vs_ZnCl2.agr

text/plain (175kB)

Creative Commons: Attribution 4.0

Figure 7

Fig8_AA_partial ... andscape_v4.agr

text/plain (198kB)

Creative Commons: Attribution 4.0

Figure 8

Fig9_XX_partial ... andscape_v2.agr

text/plain (63kB)

Creative Commons: Attribution 4.0

Figure 9

Fig10_AX_partials_v2.agr

text/plain (61kB)

Creative Commons: Attribution 4.0

Figure 10

Fig12_BAD_ClClC ... hard_sphere.agr

text/plain (40kB)

Creative Commons: Attribution 4.0

Figure 12

### Documentation

Data collection method:

The data sets were collected using the methods described in the published paper.

Data processing and preparation activities:

The data sets were analysed using the methods described in the published paper.

Technical details and requirements:

Figures 1 - 10 & 12 were prepared using QtGrace (https://sourceforge.net/projects/qtgrace/). The data set corresponding to a plotted curve within an QtGrace file can be identified by clicking on that curve.

Additional information:

The files are labelled according to the corresponding figure numbers. The units for each axis are identified on the plots.

### Funders

Royal Society

https://doi.org/10.13039/501100000288

Dorothy Hodgkin Research Fellowship - Rational Design of Glassy Materials with Technological Applications

DH140152

### Publication details

Publication date: 6 September 2019

by: University of Bath

Version: 1

DOI: https://doi.org/10.15125/BATH-00600

URL for this record: https://researchdata.bath.ac.uk/id/eprint/600

### Related articles

Salmon, P. S and Zeidler, A., 2019. Ordering on different length scales in liquid and amorphous materials. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(11), p.114006. Available from: https://doi.org/10.1088/1742-5468/ab3cce.

### Contact information

Please contact the Research Data Service in the first instance for all matters concerning this item.

Contact person: Philip Salmon

Faculty of Science

Physics

Research Centres & Institutes

Centre for Nanoscience and Nanotechnology

Centre for Networks and Collective Behaviour