Dataset for "Resonance-Induced Anomalies in Temperature-Dependent Raman Scattering of PdSe2"
The dataset contains the inputs necessary to reproduce the theoretical calculations presented in the associated paper, the abstract of which is as follows:
We report a comprehensive Raman study of the phonon behaviour in bulk and trilayer PdSe2 in the temperature range 5 K-300 K. In the bulk, a remarkable change in the Raman spectrum was observed at 120 K: a significant enhancement of the out-of-plane phonon A1g mode, accompanied by a suppression of the in-plane A2g and B21g modes. This intriguing behavior is attributed to a temperature-dependent resonant excitation effect. Our findings are corroborated by density functional theory (DFT) calculations which confirm an anisotropic electron-phonon coupling related to the relevant optical transitions. Furthermore, nonlinear frequency shifts were identified in all modes, indicating the decay of an optical phonon into multiple optical-acoustic phonons. The study of the Raman emission reported here, complemented by linear optical spectroscopies, bring out a new and unexpected scenario for the vibrational properties of PdSe2 that holds substantial promise for advanced thermoelectric and optical device applications.
Cite this dataset as:
Wolverson, D.,
2024.
Dataset for "Resonance-Induced Anomalies in Temperature-Dependent Raman Scattering of PdSe2".
Bath: University of Bath Research Data Archive.
Available from: https://doi.org/10.15125/BATH-01356.
Export
Data
PdSe2_dataset.zip
application/zip (11kB)
Creative Commons: Attribution 4.0
PdSe2_dataset.zip contains the input files for the two density functional theory codes (VASP and Quantum Espresso) used to generate the computational models presented in the associated paper.
Creators
Daniel Wolverson
University of Bath
Contributors
University of Bath
Rights Holder
Documentation
Data collection method:
The input files are intended for use with VASP and Quantum Espresso open-source density functional theory codes with pseudopotentials generated by the "atomic" code included with QE and contained in PSlibrary or included within VASP. The Phonopy code was used to generate atomic displacements corresponding to the phonon eigenmodes.
Technical details and requirements:
The VASP subfolder contains the inputs needed to generate the electronic band structure of PdSe2 and the phonons at the Gamma point. The Phonopy code was used in interactive mode to generate force constants, phonon eignemodes, and displaced structures which were then used to calculate modulated electronic band structures. The QE subfolder "Raman tensor" contains the inputs needed to calculate the phonon frequencies and displacements in Quantum Espresso along with the Raman tensors for PdSe2. The QE subfolder "EPW" contains the inputs required to calcualte the electron-phonon coupling as a function of phonon mode and wavevector via the EPW code.
Methodology link:
The VASP Manual, n.d. Available from: https://www.vasp.at/wiki/index.php/The_VASP_Manual.
Kresse, G., and Hafner, J., 1993. Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. Available from: https://doi.org/10.1103/physrevb.47.558.
Kresse, G., and Hafner, J., 1994. Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. Available from: https://doi.org/10.1103/physrevb.49.14251.
Kresse, G., and Furthmüller, J., 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. Available from: https://doi.org/10.1016/0927-0256(96)00008-0.
Kresse, G., and Furthmüller, J., 1996. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. Available from: https://doi.org/10.1103/physrevb.54.11169.
Kresse, G., and Hafner, J., 1994. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245-8257. Available from: https://doi.org/10.1088/0953-8984/6/40/015.
Kresse, G., and Joubert, D., 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. Available from: https://doi.org/10.1103/physrevb.59.1758.
Quantum ESPRESSO Foundation, and MaX Centre of Excellence, n.d. Quantum ESPRESSO. Available from: https://www.quantum-espresso.org/.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. Available from: https://doi.org/10.1088/0953-8984/21/39/395502.
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio Jr, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., and Baroni, S., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. Available from: https://doi.org/10.1088/1361-648x/aa8f79.
Prandini, Gianluca, Marrazzo, Antimo, Castelli, Ivano E., Mounet, Nicolas, Passaro, Elsa, Yu, Jusong, and Marzari, Nicola, 2023. A Standard Solid State Pseudopotentials (SSSP) library optimized for precision and efficiency. Materials Cloud. Available from: https://doi.org/10.24435/MATERIALSCLOUD:F3-YM.
Togo, A., 2009. Welcome to phonopy. GitHub. Available from: https://phonopy.github.io/phonopy/.
Togo, A., Chaput, L., Tadano, T., and Tanaka, I., 2023. Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. Available from: https://doi.org/10.1088/1361-648x/acd831.
Togo, A., 2023. First-principles Phonon Calculations with Phonopy and Phono3py. Journal of the Physical Society of Japan, 92(1). Available from: https://doi.org/10.7566/jpsj.92.012001.
EPW Collaboration, n.d. EPW Documentation. Available from: https://docs.epw-code.org/.
Poncé, S., Margine, E.R., Verdi, C., and Giustino, F., 2016. EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Computer Physics Communications, 209, 116-133. Available from: https://doi.org/10.1016/j.cpc.2016.07.028.
Giustino, F., Cohen, M. L., and Louie, S. G., 2007. Electron-phonon interaction using Wannier functions. Physical Review B, 76(16). Available from: https://doi.org/10.1103/physrevb.76.165108.
Funders
Horizon 2020 Framework Programme
https://doi.org/10.13039/100010661
OCRE Access to Commercial Services Through the EOSC-hub
824079
Publication details
Publication date: 1 July 2024
by: University of Bath
Version: 1
DOI: https://doi.org/10.15125/BATH-01356
URL for this record: https://researchdata.bath.ac.uk/id/eprint/1356
Related papers and books
Abdul-Aziz, O., Wolverson, D., Sayers, C., Carpene, E., Parmigiani, F., Hedayat, H., and van Loosdrecht, P. H. M., 2024. Resonance-Induced Anomalies in Temperature-Dependent Raman Scattering of PdSe$_{2}$. Version 1. arXiv. Available from: https://doi.org/10.48550/ARXIV.2405.09166.
Contact information
Please contact the Research Data Service in the first instance for all matters concerning this item.
Contact person: Daniel Wolverson
Faculty of Science
Physics
Research Centres & Institutes
Centre for Nanoscience and Nanotechnology