Computational Dataset for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2"
This dataset contains the computational data and analysis for the paper "Reversible Magnesium and Aluminium-Ions Insertion in Cation-Deficient Anatase TiO2" (https://doi.org/10.1038/nmat4976).
The repository contains:
1. Input and output files for the DFT calculations, performed using VASP. This is detailed below in the Data section.
2. A `vasp_summary` script, that collects the relevant VASP data into a file `F-TiO2_intercalation_data.yaml`.
3. A Jupyter notebook, `F-TiO2 intercalation energies.ipynb`, containing the data analysis, and code for plotting intercalation energies.
2 and 3 both depend on the vasppy Python module (https://github.com/bjmorgan/vasppy, https://doi.org/10.5281/zenodo.801663), available under the MIT licence.
Cite this dataset as:
Morgan, B.,
Salanne, M.,
Dambournet, D.,
2017.
Computational Dataset for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2".
Bath: University of Bath Research Data Archive.
Available from: https://doi.org/10.15125/BATH-00397.
Export
Data
morgan_et_al … BATH00397.tar.gz
application/x-gzip (408MB)
Creative Commons: Attribution-Share Alike 4.0
gzipped tar file of the supporting computational data for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2". To open use`tar -zxvf morgan_et_al_2017_BATH00397.tar.gz`
Creators
Benjamin Morgan
University of Bath
Mathieu Salanne
Project Member
Sorbonne University
Damien Dambournet
Project Leader
Sorbonne University
Contributors
University of Bath
Rights Holder
Documentation
Data collection method:
All calculations were performed using VASP 5.3.5. Input files for each calculation are contained within the dataset. For further details, please see the associated paper, available at http://opus.bath.ac.uk/57334/.
Data processing and preparation activities:
Relevant data (energies of optimised structures) were extracted using the included `vasp_summary`. Intercalation energies and voltages were calculated with the included Jupyter notebook. Both steps use the `vasppy` Python module, available at https://github.com/bjmorgan/vasppy.
Funders
Royal Society
https://doi.org/10.13039/501100000288
Dr B Morgan URF - Modelling Collective Lithium-Ion Dynamics in Battery Materials
UF130329
Engineering and Physical Sciences Research Council
https://doi.org/10.13039/501100000266
Materials Chemistry High End Computing Consortium
EP/L000202/1
Publication details
Publication date: 11 July 2017
by: University of Bath
Version: 1
DOI: https://doi.org/10.15125/BATH-00397
URL for this record: https://researchdata.bath.ac.uk/id/eprint/397
Related papers and books
Li, W., Fukunishi, M., Morgan, B. J., Borkiewicz, O. J., Chapman, K. W., Pralong, V., Maignan, A., Lebedev, O. I., Ma, J., Groult, H., Komaba, S., and Dambournet, D., 2017. A Reversible Phase Transition for Sodium Insertion in Anatase TiO2. Chemistry of Materials, 29(4), 1836-1844. Available from: https://doi.org/10.1021/acs.chemmater.7b00098.
Koketsu, T., Ma, J., Morgan, B. J., Body, M., Legein, C., Dachraoui, W., Giannini, M., Demortière, A., Salanne, M., Dardoize, F., Groult, H., Borkiewicz, O. J., Chapman, K. W., Strasser, P., and Dambournet, D., 2017. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials, 16(11), 1142-1148. Available from: https://doi.org/10.1038/nmat4976.
Contact information
Please contact the Research Data Service in the first instance for all matters concerning this item.
Contact person: Benjamin Morgan
Faculty of Science
Chemistry