Computational Dataset for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2"

This dataset contains the computational data and analysis for the paper "Reversible Magnesium and Aluminium-Ions Insertion in Cation-Deficient Anatase TiO2" (https://doi.org/10.1038/nmat4976).

The repository contains:
1. Input and output files for the DFT calculations, performed using VASP. This is detailed below in the Data section.
2. A `vasp_summary` script, that collects the relevant VASP data into a file `F-TiO2_intercalation_data.yaml`.
3. A Jupyter notebook, `F-TiO2 intercalation energies.ipynb`, containing the data analysis, and code for plotting intercalation energies.

2 and 3 both depend on the vasppy Python module (https://github.com/bjmorgan/vasppy, https://doi.org/10.5281/zenodo.801663), available under the MIT licence.

Keywords:
multivalent, batteries, density-functional-theory, intercalation
Subjects:

Cite this dataset as:
Morgan, B., Salanne, M., Dambournet, D., 2017. Computational Dataset for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2". Bath: University of Bath Research Data Archive. Available from: https://doi.org/10.15125/BATH-00397.

Export

[QR code for this page]

Data

morgan_et_al … BATH00397.tar.gz
application/x-gzip (408MB)
Creative Commons: Attribution-Share Alike 4.0

gzipped tar file of the supporting computational data for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2". To open use`tar -zxvf morgan_et_al_2017_BATH00397.tar.gz`

Creators

Mathieu Salanne
Project Member
Sorbonne Universités

Damien Dambournet
Project Leader
Sorbonne Universités

Contributors

University of Bath
Rights Holder

Documentation

Data collection method:

All calculations were performed using VASP 5.3.5. Input files for each calculation are contained within the dataset. For further details, please see the associated paper, available at http://opus.bath.ac.uk/57334/.

Data processing and preparation activities:

Relevant data (energies of optimised structures) were extracted using the included `vasp_summary`. Intercalation energies and voltages were calculated with the included Jupyter notebook. Both steps use the `vasppy` Python module, available at https://github.com/bjmorgan/vasppy.

Funders

Dr B Morgan URF - Modelling Collective Lithium-Ion Dynamics in Battery Materials
UF130329

Engineering and Physical Sciences Research Council (EPSRC)
https://doi.org/10.13039/501100000266

Materials Chemistry High End Computing Consortium
EP/L000202/1

Publication details

Publication date: 11 July 2017
by: University of Bath

Version: 1

DOI: https://doi.org/10.15125/BATH-00397

URL for this record: https://researchdata.bath.ac.uk/id/eprint/397

Related papers and books

Li, W., Fukunishi, M., Morgan, B. J., Borkiewicz, O. J., Chapman, K. W., Pralong, V., Maignan, A., Lebedev, O. I., Ma, J., Groult, H., Komaba, S., and Dambournet, D., 2017. A Reversible Phase Transition for Sodium Insertion in Anatase TiO2. Chemistry of Materials, 29(4), 1836-1844. Available from: https://doi.org/10.1021/acs.chemmater.7b00098.

Koketsu, T., Ma, J., Morgan, B. J., Body, M., Legein, C., Dachraoui, W., Giannini, M., Demortière, A., Salanne, M., Dardoize, F., Groult, H., Borkiewicz, O. J., Chapman, K. W., Strasser, P., and Dambournet, D., 2017. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials, 16(11), 1142-1148. Available from: https://doi.org/10.1038/nmat4976.

Contact information

Please contact the Research Data Service in the first instance for all matters concerning this item.

Contact person: Benjamin Morgan

Departments:

Faculty of Science
Chemistry